TensorRT-LLMs/cpp/tensorrt_llm/runtime/runtimeBuffers.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

473 lines
17 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/runtimeBuffers.h"
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmRuntime.h"
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
#include <algorithm>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
void RuntimeBuffers::clear()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
contextLengthsHost = nullptr;
contextLengthsDevice = nullptr;
logits = nullptr;
sequenceLengths = nullptr;
lastTokenIds = nullptr;
requestTypes = nullptr;
cacheIndirectionDecoderInput = nullptr;
cacheIndirectionDecoderOutput = nullptr;
cumLogProbs = nullptr;
logProbs = nullptr;
hiddenStates = nullptr;
allocated = false;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::clearTensorMaps()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
for (auto& buffer : inputBuffers)
buffer.clear();
for (auto& buffer : outputBuffers)
buffer.clear();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::create(TllmRuntime const& runtime, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
bool gatherGenerationLogits)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& manager = runtime.getBufferManager();
auto const& engine = runtime.getEngine();
if (worldConfig.isLastPipelineParallelRank())
{
auto const logitsType = engine.getTensorDataType("logits");
logits = manager.emptyTensor(MemoryType::kGPU, logitsType);
originalLogitsPtr = logits;
allGenerationLogits = manager.emptyTensor(MemoryType::kGPU, logitsType);
if (gatherGenerationLogits)
{
cacheGenerationFragmentPointerDevice = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT64);
cacheGenerationFragmentPointerHost
= manager.emptyTensor(MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT64);
generationLogitsFragments = std::make_shared<std::vector<TensorPtr>>();
}
}
lastTokenIds = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
bool transformerBased = modelConfig.isTransformerBased();
bool rnnBased = modelConfig.isRnnBased();
contextLengthsHost = manager.emptyTensor(MemoryType::kPINNEDPOOL, nvinfer1::DataType::kINT32);
if (transformerBased)
{
if (modelConfig.useGptAttentionPlugin())
{
requestTypes = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
}
transformerBuffers.emplace(runtime, modelConfig, worldConfig);
}
if (rnnBased)
{
requestTypes = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
rnnStateBuffers.emplace(runtime, modelConfig, worldConfig);
}
cacheIndirectionDecoderInput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
cacheIndirectionDecoderOutput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
nbFinished = BufferManager::pinned(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
if (worldConfig.isPipelineParallel())
{
hiddenStates = manager.emptyTensor(MemoryType::kGPU, modelConfig.getDataType());
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::initFromInput(ITensor const& inputIds, TensorPtr const& inputLengths, bool inputPacked,
SizeType32 beamWidth, std::vector<SizeType32> maxAttentionWindowVec, SizeType32 maxAttentionWindow,
SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, BufferManager& manager)
{
contextLengthsDevice = inputLengths;
contextLengthsHost->reshape(inputLengths->getShape());
manager.copy(*contextLengthsDevice, *contextLengthsHost);
manager.getStream().synchronize(); // wait for context lengths to be copied to host
generationConfig = GenerationConfig::fromInput(inputIds, *contextLengthsHost, inputPacked, beamWidth,
maxAttentionWindowVec, maxAttentionWindow, sinkTokenLength, maxSequenceLength);
}
void RuntimeBuffers::reshape(
ModelConfig const& modelConfig, WorldConfig const& worldConfig, bool gatherGenerationLogits)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
auto const maxInputLength = generationConfig.maxInputLength;
auto const maxAttentionWindow = generationConfig.maxAttentionWindow;
auto const maxSeqLength = generationConfig.maxSeqLength;
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
if (worldConfig.isLastPipelineParallelRank())
{
if (modelConfig.computeContextLogits())
{
if (!gatherGenerationLogits)
{
// If only enable computeContextLogits, also need to have a generation buffer to store the last token of
// context
allGenerationLogits->reshape(ITensor::makeShape({1, batchSize, beamWidth, vocabSizePadded}));
}
}
else
{
// If only gather generation logits
if (gatherGenerationLogits)
{
logits = originalLogitsPtr; // logits point to original buffer
}
logits->reshape(ITensor::makeShape({batchSize, 1, vocabSizePadded}));
}
if (gatherGenerationLogits)
{
allGenerationLogits->reshape(
ITensor::makeShape({(maxSeqLength - maxInputLength), batchSize, beamWidth, vocabSizePadded}));
cacheGenerationFragmentPointerDevice->reshape(
ITensor::makeShape({batchSize, (maxSeqLength - maxInputLength)}));
cacheGenerationFragmentPointerHost->reshape(
ITensor::makeShape({batchSize, (maxSeqLength - maxInputLength)}));
}
}
lastTokenIds->reshape(ITensor::makeShape({batchSize}));
if (transformerBuffers)
{
if (modelConfig.useGptAttentionPlugin())
{
requestTypes->reshape(ITensor::makeShape({batchSize}));
}
transformerBuffers->reshape(generationConfig, modelConfig, worldConfig);
}
if (rnnStateBuffers)
{
requestTypes->reshape(ITensor::makeShape({batchSize}));
rnnStateBuffers->reshape(generationConfig, modelConfig, worldConfig);
}
auto const cacheIndirShape = ITensor::makeShape({batchSize, beamWidth, maxAttentionWindow});
cacheIndirectionDecoderInput->reshape(cacheIndirShape);
cacheIndirectionDecoderOutput->reshape(cacheIndirShape);
if (worldConfig.isPipelineParallel())
{
// reserve max size
auto const maxNumTokens = std::max(beamWidth, maxInputLength);
auto const hiddenSize = modelConfig.getHiddenSize() * worldConfig.getTensorParallelism();
auto const hiddenStatesShape = ITensor::makeShape(
{batchSize, maxNumTokens, hiddenSize}); // reserve space in traditional [bs, seq_len, hidden_state] way.
hiddenStates->reshape(hiddenStatesShape);
}
allocated = true;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::reset(BufferManager& manager)
{
clearTensorMaps();
manager.setZero(*cacheIndirectionDecoderInput);
manager.setZero(*cacheIndirectionDecoderOutput);
if (transformerBuffers)
{
transformerBuffers->reset(manager);
}
if (rnnStateBuffers)
{
rnnStateBuffers->reset(manager);
}
}
std::vector<RuntimeBuffers> RuntimeBuffers::split(
SizeType32 contextBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
std::vector<RuntimeBuffers> bufferSlices;
auto const generationBatchSize = generationConfig.batchSize;
bufferSlices.reserve(tc::ceilDiv(generationBatchSize, contextBatchSize));
if (contextBatchSize >= generationBatchSize)
{
bufferSlices.emplace_back(*this);
}
else
{
for (auto offset = 0; offset < generationBatchSize; offset += contextBatchSize)
{
auto const batchSize = std::min(contextBatchSize, generationBatchSize - offset);
auto& buffers = bufferSlices.emplace_back();
buffers.generationConfig = generationConfig;
buffers.generationConfig.batchSize = batchSize;
buffers.contextLengthsHost = ITensor::slice(contextLengthsHost, offset, batchSize);
buffers.contextLengthsDevice = ITensor::slice(contextLengthsDevice, offset, batchSize);
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
buffers.logits = ITensor::slice(logits, offset, batchSize);
}
buffers.lastTokenIds = ITensor::slice(lastTokenIds, offset, batchSize);
if (transformerBuffers)
{
buffers.transformerBuffers
= transformerBuffers->sliceTo(generationConfig, modelConfig, offset, batchSize);
}
if (rnnStateBuffers)
{
buffers.rnnStateBuffers = rnnStateBuffers->sliceTo(offset, batchSize);
}
if (requestTypes != nullptr)
{
buffers.requestTypes = ITensor::slice(requestTypes, offset, batchSize);
}
if (worldConfig.isPipelineParallel())
{
TLLM_CHECK_WITH_INFO(hiddenStates->getShape().nbDims == 3,
"Invalid shape for hiddenStates."); // Expect hiddens states shape to be [bs, seq_len, hidden_size]
// at generation buffer split stage.
buffers.hiddenStates = ITensor::slice(hiddenStates, offset, batchSize);
}
buffers.cacheIndirectionDecoderOutput = ITensor::slice(cacheIndirectionDecoderOutput, offset, batchSize);
if (modelConfig.usePromptTuning())
{
auto const& ptuningEnabled = promptTuningParams.promptTuningEnabled;
buffers.promptTuningParams.promptTuningEnabled
= std::vector<bool>(ptuningEnabled.begin() + offset, ptuningEnabled.begin() + offset + batchSize);
buffers.promptTuningParams.tasks = ITensor::slice(promptTuningParams.tasks, offset, batchSize);
}
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return bufferSlices;
}
void RuntimeBuffers::gatherLastTokenLogits(
BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(modelConfig.computeContextLogits(),
"Gather last token logits is only necessary when context logits are computed");
if (worldConfig.isLastPipelineParallelRank())
{
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
TensorPtr tiledTensor = ITensor::slice(allGenerationLogits, 0, 1);
tiledTensor->squeeze(0);
kernels::gatherLastTokenLogits(*tiledTensor, *logits, *lastTokenIds, manager.getStream());
manager.getStream().synchronize();
std::swap(logits, tiledTensor);
if (modelConfig.usePackedInput())
{
tiledTensor->reshape(
ITensor::makeShape({generationConfig.inputLengthSum, vocabSizePadded})); // [packedSize, vocabSize]
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::postContextStep(std::vector<RuntimeBuffers> const& contextBuffers, BufferManager& manager,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
if (transformerBuffers)
{
transformerBuffers->postContextStep(this, contextBuffers, manager, modelConfig, worldConfig);
}
if (rnnStateBuffers)
{
rnnStateBuffers->postContextStep(this, contextBuffers, manager, modelConfig, worldConfig);
}
// use output lengths after context step
manager.copy(*contextLengthsDevice, *outputLengths);
sequenceLengths = ITensor::view(outputLengths);
sequenceLengths->reshape(ITensor::makeShape({batchSize * beamWidth}));
// no need to copy data in lastTokenIds because it is overwritten in prepareNextStep
lastTokenIds->reshape(ITensor::makeShape({batchSize * beamWidth}));
if (modelConfig.usePromptTuning())
{
std::vector<SizeType32> reqBeamWidths(batchSize, beamWidth);
//// Note: reqPromptLenghts won't be used
std::vector<SizeType32> reqPromptLengths;
// Copy the generationInput tasks to host
promptTuningTasksHost = manager.copyFrom(*promptTuningParams.tasks, MemoryType::kPINNEDPOOL);
// Update the promptTuningParams tasks tensor
promptTuningParams.fillTasksTensor(promptTuningTasksHost, batchSize, 0, reqBeamWidths, reqPromptLengths,
manager, modelConfig.usePackedInput());
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::prepareContextStep(TensorPtr const& inputIds, TokenIdType const padId, BufferManager& manager,
batch_manager::kv_cache_manager::BaseKVCacheManager const* kvCacheManager, SizeType32 firstBatchSlotIdx,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& stream = manager.getStream();
// use context lengths only in context step
sequenceLengths = contextLengthsDevice;
if (transformerBuffers)
{
transformerBuffers->prepareContextStep(
this, inputIds, padId, manager, kvCacheManager, firstBatchSlotIdx, modelConfig, worldConfig);
}
if (rnnStateBuffers)
{
rnnStateBuffers->prepareContextStep(this, manager);
}
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *contextLengthsDevice, manager, stream);
}
else
{
manager.copy(*contextLengthsDevice, *lastTokenIds);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
RuntimeBuffers::TensorPtr RuntimeBuffers::prepareNextStep(SizeType32 const step, BufferManager& manager,
batch_manager::kv_cache_manager::BaseKVCacheManager* kvCacheManager, SizeType32 firstBatchSlotIdx,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const& stream = manager.getStream();
SizeType32 const batchSize = generationConfig.batchSize;
SizeType32 const beamWidth = generationConfig.beamWidth;
auto const inputShape = [&modelConfig, batchSize, beamWidth]()
{
if (modelConfig.usePackedInput())
{
// batch in last dim
return ITensor::makeShape({batchSize * beamWidth});
}
else
{
// batch in first dim
return ITensor::makeShape({batchSize * beamWidth, 1});
}
}();
auto nextInputIds = newTokens ? ITensor::view(newTokens, inputShape) : TensorPtr{};
if (transformerBuffers)
{
transformerBuffers->prepareNextStep(
this, step, manager, kvCacheManager, firstBatchSlotIdx, modelConfig, worldConfig);
}
kernels::invokeFill(*lastTokenIds, 1, stream);
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *lastTokenIds, manager, stream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return nextInputIds;
}
void RuntimeBuffers::getRuntimeBuffers(TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType32 const step,
TensorPtr const& inputIds, TensorPtr const& commPtrs, ModelConfig const& modelConfig,
WorldConfig const& worldConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
inputBuffers.clear();
outputBuffers.clear();
if (transformerBuffers)
{
transformerBuffers->getRuntimeBuffers(
this, inputBuffers, outputBuffers, step, inputIds, modelConfig, worldConfig);
}
if (rnnStateBuffers)
{
rnnStateBuffers->getRuntimeBuffers(this, inputBuffers, outputBuffers, step, inputIds, modelConfig, worldConfig);
}
if (worldConfig.isTensorParallel())
{
inputBuffers.insert_or_assign("all_reduce_workspace", commPtrs);
}
if (modelConfig.usePromptTuning())
{
inputBuffers.insert_or_assign("prompt_embedding_table", promptTuningParams.embeddingTable);
inputBuffers.insert_or_assign("tasks", promptTuningParams.tasks);
inputBuffers.insert_or_assign("prompt_vocab_size", promptTuningParams.vocabSize);
}
// utils::printTensorMap(std::cerr, inputBuffers);
// utils::printTensorMap(std::cerr, outputBuffers);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}