TensorRT-LLMs/examples/grok/convert_checkpoint.py
2024-12-24 15:58:43 +08:00

365 lines
13 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import sys
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import tensorrt_llm
from tensorrt_llm._utils import release_gc
from tensorrt_llm.layers import MoeConfig
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import GrokForCausalLM
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--weights_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--inter_size', type=int, default=11008)
parser.add_argument('--rms_norm_eps', type=float, default=1e-06)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--disable_weight_only_quant_plugin',
default=False,
action="store_true",
help=
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--moe_num_experts',
default=0,
type=int,
help='Specify the number of experts to use for MOE layers')
parser.add_argument(
'--moe_top_k',
default=0,
type=int,
help=
'Specify the top_k value to use for MOE layers. Default to 1 if --moe_num_experts is set'
)
parser.add_argument(
'--moe_tp_size',
type=int,
default=-1,
help=
'N-way tensor parallelism size for MOE, default is tp_size, which will do tp-only for MoE'
)
parser.add_argument(
'--moe_ep_size',
type=int,
default=-1,
help=
'N-way expert parallelism size for MOE, default is 1, which will do tp-only for MoE'
)
parser.add_argument(
'--moe_renorm_mode',
default=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
type=int,
help=
'Controls renormalization after gate logits. Check layers/moe.py for accepted values',
)
parser.add_argument(
'--save_config_only',
action="store_true",
default=False,
help=
'Only save the model config w/o read and converting weights, be careful, this is for debug only'
)
args = parser.parse_args()
# changing the default to be consistent as the cli help said.
if args.moe_num_experts and args.moe_top_k == 0:
args.moe_top_k = 1
return args
def args_to_quantization(args: argparse.Namespace) -> QuantConfig:
'''return config dict with quantization info based on the command line args
'''
quant_config = QuantConfig()
if args.use_weight_only:
if args.weight_only_precision == 'int8':
quant_config.quant_algo = QuantAlgo.W8A16
return quant_config
def args_to_build_options(args):
return {
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'disable_weight_only_quant_plugin':
args.disable_weight_only_quant_plugin
}
def from_cli_args(args):
n_kv_head = args.n_kv_head if args.n_kv_head is not None else args.n_head
config = {
'architecture': "LlamaForCausalLM",
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': args.n_layer,
'num_attention_heads': args.n_head,
'hidden_size': args.n_embd,
'intermediate_size': args.inter_size,
'num_key_value_heads': n_kv_head,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': args.n_positions,
'hidden_act': args.hidden_act,
'rotary_base': args.rotary_base,
'norm_epsilon': args.rms_norm_eps,
'moe_num_experts': args.moe_num_experts,
'moe_top_k': args.moe_top_k,
'moe_normalization_mode': args.moe_renorm_mode,
'mapping': {
'world_size': args.tp_size * args.pp_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
'moe_tp_size': args.moe_tp_size,
'moe_ep_size': args.moe_ep_size,
},
'quantization': args_to_quantization(args).asdict()
}
config.update(args_to_build_options(args))
return config
def preload_model(model_dir, weights_dir=None):
sys.path.append(model_dir)
from model import LanguageModelConfig, TransformerConfig
from runners import ModelRunner
if weights_dir and os.path.exists(weights_dir):
CKPT_PATH = weights_dir
else:
CKPT_PATH = os.path.join(model_dir, "checkpoints")
grok_1_model = LanguageModelConfig(
vocab_size=128 * 1024,
pad_token=0,
eos_token=2,
sequence_len=8192,
embedding_init_scale=1.0,
output_multiplier_scale=0.5773502691896257,
embedding_multiplier_scale=78.38367176906169,
model=TransformerConfig(
emb_size=48 * 128,
widening_factor=8,
key_size=128,
num_q_heads=48,
num_kv_heads=8,
num_layers=64,
attn_output_multiplier=0.08838834764831845,
shard_activations=True,
# MoE.
num_experts=8,
num_selected_experts=2,
# Activation sharding.
data_axis="data",
model_axis="model",
),
)
runner = ModelRunner(
model=grok_1_model,
bs_per_device=0.125,
checkpoint_path=CKPT_PATH,
)
dummy_data = dict(
inputs=np.zeros((1, 256), dtype=np.int32),
targets=np.zeros((1, 256), dtype=np.int32),
)
runner.transform_forward = True
runner.initialize(dummy_data, (1, 8), (1, 1))
params = runner.load_or_init(dummy_data)
return params
def convert_and_save_xai(args):
model_dir = args.model_dir
load_by_shard = args.load_by_shard
world_size = args.tp_size * args.pp_size
if (args.moe_tp_size == -1 and args.moe_ep_size == -1):
# moe default to tp-only
args.moe_tp_size = args.tp_size
args.moe_ep_size = 1
elif (args.moe_tp_size == -1):
args.moe_tp_size = args.tp_size // args.moe_ep_size
elif (args.moe_ep_size == -1):
args.moe_ep_size = args.tp_size // args.moe_tp_size
assert (args.moe_tp_size * args.moe_ep_size == args.tp_size
), "moe_tp_size * moe_ep_size must equal to tp_size"
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
# before the refactor is done.
override_fields = {}
quantization = args_to_quantization(args)
override_fields.update(args_to_build_options(args))
# When not loading by shard, preload one complete model and then slice per rank weights from this
# this saves the disk reloading time
xai_model = preload_model(
model_dir, args.weights_dir) if not args.load_by_shard else None
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size,
moe_tp_size=args.moe_tp_size,
moe_ep_size=args.moe_ep_size)
grok = GrokForCausalLM.from_hugging_face(
model_dir,
args.dtype,
mapping=mapping,
quantization=quantization,
load_by_shard=load_by_shard,
override_fields=override_fields,
preloaded_model=xai_model,
)
grok.save_checkpoint(args.output_dir, save_config=(rank == 0))
del grok
execute(args.workers, [convert_and_save_rank] * world_size, args)
release_gc()
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.model_dir is None: # generate fake config.json
config = from_cli_args(args)
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
else: # all other non-gptq paths from hf model
assert args.model_dir is not None
convert_and_save_xai(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()