TensorRT-LLMs/examples/mamba/convert_checkpoint.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

226 lines
7.6 KiB
Python

import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import tensorrt_llm
from tensorrt_llm import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import MambaForCausalLM
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=Path, default=None)
parser.add_argument("--world_size",
type=int,
default=1,
help="world size, only support tensor parallelism now")
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'float16', 'bfloat16', 'float32'],
help=
"The data type for the model weights and activations if not quantized. "
"If 'auto', the data type is automatically inferred from the source model; "
"however, if the source dtype is float32, it is converted to float16.")
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--output_dir',
type=Path,
default='mamba_tllm_checkpoint',
help='The path to save the mamba TensorRT-LLM checkpoint')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
def load_config_hf(model_name, ckpt_type, dtype, mapping, quant_config,
output_dir):
if ckpt_type == CheckpointType.hf: # transformer compatible models
override_fields = {}
mamba = MambaForCausalLM.from_hugging_face(
model_name,
dtype,
mapping=mapping,
quant_config=quant_config,
**override_fields,
)
mamba.save_checkpoint(output_dir, save_config=True)
elif ckpt_type == CheckpointType.state_spaces: # state-spaces/mamba models
config = json.load(open(os.path.join(model_name, 'config.json')))
override_fields = {}
mamba = MambaForCausalLM.from_hugging_face(
model_name,
dtype,
mapping=mapping,
quant_config=quant_config,
**override_fields,
)
mamba.save_checkpoint(output_dir, save_config=True)
ssm_cfg = config.pop('ssm_cfg')
cfg_to_mamba_cfg = {
'd_model': 'hidden_size',
'n_layer': 'num_hidden_layers',
'fused_add_norm': None,
'tie_embeddings': None,
}
ssm_cfg_to_mamba_cfg = {
'd_state': 'state_size',
'd_conv': 'conv_kernel',
'bias': 'use_bias',
'headdim': 'head_dim',
'ngroups': 'n_groups',
'chunk_size': 'chunk_size',
'rmsnorm': 'ssm_rmsnorm',
}
for k in cfg_to_mamba_cfg:
if k in config:
v = config.pop(k)
if cfg_to_mamba_cfg[k] is not None:
config[cfg_to_mamba_cfg[k]] = v
for k in ssm_cfg_to_mamba_cfg:
if k in ssm_cfg and ssm_cfg_to_mamba_cfg[k] is not None:
config[ssm_cfg_to_mamba_cfg[k]] = ssm_cfg[k]
hf_config = MambaConfig(**config)
if 'expand' in ssm_cfg:
expand = ssm_cfg['expand']
hf_config.intermediate_size = expand * hf_config.hidden_size
else:
hf_config.intermediate_size = 2 * hf_config.hidden_size
mamba_version = ssm_cfg.pop("layer", "Mamba1")
elif ckpt_type == CheckpointType.mistral_inference: # mistral inference format
config = json.load(open(os.path.join(model_name, 'params.json')))
cfg_to_mamba_cfg = {
'dim': 'hidden_size',
'n_layers': 'num_hidden_layers',
'n_groups': 'n_groups',
'fused_add_norm': None,
'tie_embeddings': None,
'model_type': None,
}
for k in cfg_to_mamba_cfg:
if k in config:
v = config.pop(k)
if cfg_to_mamba_cfg[k] is not None:
config[cfg_to_mamba_cfg[k]] = v
hf_config = MambaConfig(**config)
if 'expand' in config:
expand = config['expand']
hf_config.intermediate_size = expand * hf_config.hidden_size
else:
hf_config.intermediate_size = 2 * hf_config.hidden_size
mamba_version = 'Mamba2'
return hf_config, mamba_version
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
'''return config dict with quantization info based on the command line args
'''
quant_config = QuantConfig()
if args.use_weight_only:
if args.weight_only_precision == 'int8':
quant_config.quant_algo = QuantAlgo.W8A16
elif args.weight_only_precision == 'int4':
quant_config.quant_algo = QuantAlgo.W4A16
return quant_config
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
assert args.pp_size == 1, "Pipeline parallelism is not supported."
world_size = args.tp_size * args.pp_size
args.output_dir.mkdir(exist_ok=True, parents=True)
quant_config = args_to_quant_config(args)
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
mamba = MambaForCausalLM.from_hugging_face(
args.model_dir,
args.dtype,
mapping=mapping,
quant_config=quant_config,
)
mamba.save_checkpoint(args.output_dir, save_config=(rank == 0))
del mamba
execute(args.workers, [convert_and_save_rank] * world_size, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()