mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
226 lines
7.6 KiB
Python
226 lines
7.6 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from pathlib import Path
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import MambaForCausalLM
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--model_dir', type=Path, default=None)
|
|
parser.add_argument("--world_size",
|
|
type=int,
|
|
default=1,
|
|
help="world size, only support tensor parallelism now")
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument(
|
|
'--dtype',
|
|
type=str,
|
|
default='auto',
|
|
choices=['auto', 'float16', 'bfloat16', 'float32'],
|
|
help=
|
|
"The data type for the model weights and activations if not quantized. "
|
|
"If 'auto', the data type is automatically inferred from the source model; "
|
|
"however, if the source dtype is float32, it is converted to float16.")
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument(
|
|
'--output_dir',
|
|
type=Path,
|
|
default='mamba_tllm_checkpoint',
|
|
help='The path to save the mamba TensorRT-LLM checkpoint')
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def load_config_hf(model_name, ckpt_type, dtype, mapping, quant_config,
|
|
output_dir):
|
|
if ckpt_type == CheckpointType.hf: # transformer compatible models
|
|
override_fields = {}
|
|
mamba = MambaForCausalLM.from_hugging_face(
|
|
model_name,
|
|
dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**override_fields,
|
|
)
|
|
mamba.save_checkpoint(output_dir, save_config=True)
|
|
|
|
elif ckpt_type == CheckpointType.state_spaces: # state-spaces/mamba models
|
|
config = json.load(open(os.path.join(model_name, 'config.json')))
|
|
override_fields = {}
|
|
mamba = MambaForCausalLM.from_hugging_face(
|
|
model_name,
|
|
dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**override_fields,
|
|
)
|
|
mamba.save_checkpoint(output_dir, save_config=True)
|
|
|
|
ssm_cfg = config.pop('ssm_cfg')
|
|
cfg_to_mamba_cfg = {
|
|
'd_model': 'hidden_size',
|
|
'n_layer': 'num_hidden_layers',
|
|
'fused_add_norm': None,
|
|
'tie_embeddings': None,
|
|
}
|
|
ssm_cfg_to_mamba_cfg = {
|
|
'd_state': 'state_size',
|
|
'd_conv': 'conv_kernel',
|
|
'bias': 'use_bias',
|
|
'headdim': 'head_dim',
|
|
'ngroups': 'n_groups',
|
|
'chunk_size': 'chunk_size',
|
|
'rmsnorm': 'ssm_rmsnorm',
|
|
}
|
|
for k in cfg_to_mamba_cfg:
|
|
if k in config:
|
|
v = config.pop(k)
|
|
if cfg_to_mamba_cfg[k] is not None:
|
|
config[cfg_to_mamba_cfg[k]] = v
|
|
for k in ssm_cfg_to_mamba_cfg:
|
|
if k in ssm_cfg and ssm_cfg_to_mamba_cfg[k] is not None:
|
|
config[ssm_cfg_to_mamba_cfg[k]] = ssm_cfg[k]
|
|
|
|
hf_config = MambaConfig(**config)
|
|
if 'expand' in ssm_cfg:
|
|
expand = ssm_cfg['expand']
|
|
hf_config.intermediate_size = expand * hf_config.hidden_size
|
|
else:
|
|
hf_config.intermediate_size = 2 * hf_config.hidden_size
|
|
mamba_version = ssm_cfg.pop("layer", "Mamba1")
|
|
|
|
elif ckpt_type == CheckpointType.mistral_inference: # mistral inference format
|
|
config = json.load(open(os.path.join(model_name, 'params.json')))
|
|
cfg_to_mamba_cfg = {
|
|
'dim': 'hidden_size',
|
|
'n_layers': 'num_hidden_layers',
|
|
'n_groups': 'n_groups',
|
|
'fused_add_norm': None,
|
|
'tie_embeddings': None,
|
|
'model_type': None,
|
|
}
|
|
for k in cfg_to_mamba_cfg:
|
|
if k in config:
|
|
v = config.pop(k)
|
|
if cfg_to_mamba_cfg[k] is not None:
|
|
config[cfg_to_mamba_cfg[k]] = v
|
|
hf_config = MambaConfig(**config)
|
|
if 'expand' in config:
|
|
expand = config['expand']
|
|
hf_config.intermediate_size = expand * hf_config.hidden_size
|
|
else:
|
|
hf_config.intermediate_size = 2 * hf_config.hidden_size
|
|
mamba_version = 'Mamba2'
|
|
|
|
return hf_config, mamba_version
|
|
|
|
|
|
def execute(workers, func, args):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
|
|
'''return config dict with quantization info based on the command line args
|
|
'''
|
|
quant_config = QuantConfig()
|
|
if args.use_weight_only:
|
|
if args.weight_only_precision == 'int8':
|
|
quant_config.quant_algo = QuantAlgo.W8A16
|
|
elif args.weight_only_precision == 'int4':
|
|
quant_config.quant_algo = QuantAlgo.W4A16
|
|
|
|
return quant_config
|
|
|
|
|
|
def main():
|
|
print(tensorrt_llm.__version__)
|
|
|
|
args = parse_arguments()
|
|
logger.set_level(args.log_level)
|
|
tik = time.time()
|
|
assert args.pp_size == 1, "Pipeline parallelism is not supported."
|
|
world_size = args.tp_size * args.pp_size
|
|
|
|
args.output_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
quant_config = args_to_quant_config(args)
|
|
|
|
def convert_and_save_rank(args, rank):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
|
|
mamba = MambaForCausalLM.from_hugging_face(
|
|
args.model_dir,
|
|
args.dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
)
|
|
mamba.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
del mamba
|
|
|
|
execute(args.workers, [convert_and_save_rank] * world_size, args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|