mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
340 lines
14 KiB
Python
340 lines
14 KiB
Python
# MIT License
|
|
#
|
|
# Copyright (c) 2020 Dan Hendrycks
|
|
# Copyright (c) 2023 Deep Cognition and Language Research (DeCLaRe) Lab
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
# Not a contribution
|
|
# Changes made by NVIDIA CORPORATION & AFFILIATES or otherwise documented as
|
|
# NVIDIA-proprietary are not a contribution and subject to the following terms and conditions:
|
|
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
import math
|
|
from typing import Iterable, List, Optional, Union
|
|
|
|
import click
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from .. import LLM as PyTorchLLM
|
|
from .._tensorrt_engine import LLM
|
|
from ..llmapi import RequestOutput
|
|
from ..logger import logger
|
|
from ..sampling_params import SamplingParams
|
|
from .interface import Evaluator
|
|
|
|
|
|
class MMLU(Evaluator):
|
|
DATASET_URL = "https://people.eecs.berkeley.edu/~hendrycks/data.tar"
|
|
|
|
CHOICES = ["A", "B", "C", "D"]
|
|
SUBJECT_TO_SUBCATEGORIES = {
|
|
"abstract_algebra": ["math"],
|
|
"anatomy": ["health"],
|
|
"astronomy": ["physics"],
|
|
"business_ethics": ["business"],
|
|
"clinical_knowledge": ["health"],
|
|
"college_biology": ["biology"],
|
|
"college_chemistry": ["chemistry"],
|
|
"college_computer_science": ["computer science"],
|
|
"college_mathematics": ["math"],
|
|
"college_medicine": ["health"],
|
|
"college_physics": ["physics"],
|
|
"computer_security": ["computer science"],
|
|
"conceptual_physics": ["physics"],
|
|
"econometrics": ["economics"],
|
|
"electrical_engineering": ["engineering"],
|
|
"elementary_mathematics": ["math"],
|
|
"formal_logic": ["philosophy"],
|
|
"global_facts": ["other"],
|
|
"high_school_biology": ["biology"],
|
|
"high_school_chemistry": ["chemistry"],
|
|
"high_school_computer_science": ["computer science"],
|
|
"high_school_european_history": ["history"],
|
|
"high_school_geography": ["geography"],
|
|
"high_school_government_and_politics": ["politics"],
|
|
"high_school_macroeconomics": ["economics"],
|
|
"high_school_mathematics": ["math"],
|
|
"high_school_microeconomics": ["economics"],
|
|
"high_school_physics": ["physics"],
|
|
"high_school_psychology": ["psychology"],
|
|
"high_school_statistics": ["math"],
|
|
"high_school_us_history": ["history"],
|
|
"high_school_world_history": ["history"],
|
|
"human_aging": ["health"],
|
|
"human_sexuality": ["culture"],
|
|
"international_law": ["law"],
|
|
"jurisprudence": ["law"],
|
|
"logical_fallacies": ["philosophy"],
|
|
"machine_learning": ["computer science"],
|
|
"management": ["business"],
|
|
"marketing": ["business"],
|
|
"medical_genetics": ["health"],
|
|
"miscellaneous": ["other"],
|
|
"moral_disputes": ["philosophy"],
|
|
"moral_scenarios": ["philosophy"],
|
|
"nutrition": ["health"],
|
|
"philosophy": ["philosophy"],
|
|
"prehistory": ["history"],
|
|
"professional_accounting": ["other"],
|
|
"professional_law": ["law"],
|
|
"professional_medicine": ["health"],
|
|
"professional_psychology": ["psychology"],
|
|
"public_relations": ["politics"],
|
|
"security_studies": ["politics"],
|
|
"sociology": ["culture"],
|
|
"us_foreign_policy": ["politics"],
|
|
"virology": ["health"],
|
|
"world_religions": ["philosophy"],
|
|
}
|
|
CATEGORY_TO_SUBCATEGORIES = {
|
|
"STEM": [
|
|
"physics",
|
|
"chemistry",
|
|
"biology",
|
|
"computer science",
|
|
"math",
|
|
"engineering",
|
|
],
|
|
"humanities": ["history", "philosophy", "law"],
|
|
"social sciences": [
|
|
"politics",
|
|
"culture",
|
|
"economics",
|
|
"geography",
|
|
"psychology",
|
|
],
|
|
"other (business, health, misc.)": ["other", "business", "health"],
|
|
}
|
|
|
|
def __init__(self,
|
|
dataset_path: Optional[str] = None,
|
|
num_samples: Optional[int] = None,
|
|
num_fewshot: int = 5,
|
|
random_seed: int = 0,
|
|
apply_chat_template: bool = False,
|
|
system_prompt: Optional[str] = None):
|
|
super().__init__(random_seed=random_seed,
|
|
apply_chat_template=apply_chat_template,
|
|
system_prompt=system_prompt)
|
|
if dataset_path is None:
|
|
dataset_path = self.dowload_dataset()
|
|
self.dataset_path = dataset_path
|
|
if num_samples is None:
|
|
self.num_samples_per_subject = None
|
|
else:
|
|
self.num_samples_per_subject = math.ceil(
|
|
num_samples / len(self.SUBJECT_TO_SUBCATEGORIES))
|
|
self.num_fewshot = num_fewshot
|
|
|
|
def dowload_dataset(self):
|
|
import os
|
|
import tarfile
|
|
from tempfile import TemporaryDirectory
|
|
|
|
import requests
|
|
|
|
self.tempdir = TemporaryDirectory()
|
|
workspace = self.tempdir.name
|
|
|
|
response = requests.get(self.DATASET_URL, timeout=60)
|
|
with open(f"{workspace}/data.tar", "wb") as f:
|
|
f.write(response.content)
|
|
|
|
with tarfile.open(f"{workspace}/data.tar") as tar:
|
|
for member in tar.getmembers():
|
|
member_path = os.path.abspath(f"{workspace}/{member.name}")
|
|
if not member_path.startswith(workspace):
|
|
raise ValueError(
|
|
f"Insecure member found in tar file: {member.name}")
|
|
tar.extract(member, path=workspace, filter=tarfile.data_filter)
|
|
|
|
return f"{workspace}/data"
|
|
|
|
def format_subject(self, subject):
|
|
line = subject.split("_")
|
|
s = ""
|
|
for entry in line:
|
|
s += " " + entry
|
|
return s
|
|
|
|
def format_example(self, df, idx, include_answer=True):
|
|
prompt = df.iloc[idx, 0]
|
|
k = df.shape[1] - 2
|
|
for j in range(k):
|
|
prompt += "\n{}. {}".format(self.CHOICES[j], df.iloc[idx, j + 1])
|
|
prompt += "\nAnswer:"
|
|
if include_answer:
|
|
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
|
|
return prompt
|
|
|
|
def gen_prompt(self, train_df, subject, k=-1):
|
|
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
|
|
self.format_subject(subject))
|
|
if k == -1:
|
|
k = train_df.shape[0]
|
|
for i in range(k):
|
|
prompt += self.format_example(train_df, i)
|
|
return prompt
|
|
|
|
def generate_samples(self) -> Iterable[tuple]:
|
|
for subject in self.SUBJECT_TO_SUBCATEGORIES.keys():
|
|
dev_df = pd.read_csv(f"{self.dataset_path}/dev/{subject}_dev.csv",
|
|
header=None)
|
|
train_prompt = self.gen_prompt(dev_df, subject, self.num_fewshot)
|
|
|
|
test_df = pd.read_csv(
|
|
f"{self.dataset_path}/test/{subject}_test.csv", header=None)
|
|
if self.num_samples_per_subject is not None and self.num_samples_per_subject < test_df.shape[
|
|
0]:
|
|
test_df = test_df.sample(self.num_samples_per_subject)
|
|
|
|
for i in range(test_df.shape[0]):
|
|
prompt_end = self.format_example(test_df,
|
|
i,
|
|
include_answer=False)
|
|
prompt = train_prompt + prompt_end
|
|
label = test_df.iloc[i, test_df.shape[1] - 1]
|
|
yield prompt, {"temperature": 0}, label, subject
|
|
|
|
def compute_score(self, outputs: List[RequestOutput], references: List[str],
|
|
subjects: List[str]) -> float:
|
|
subject_corrections = {
|
|
key: []
|
|
for key in self.SUBJECT_TO_SUBCATEGORIES.keys()
|
|
}
|
|
for output, ref, sub in zip(outputs, references, subjects):
|
|
correction = output.outputs[0].text.strip().startswith(ref)
|
|
subject_corrections[sub].append(correction)
|
|
|
|
subcategory_corrections = {
|
|
key: []
|
|
for subcats in self.SUBJECT_TO_SUBCATEGORIES.values()
|
|
for key in subcats
|
|
}
|
|
category_corrections = {
|
|
key: []
|
|
for key in self.CATEGORY_TO_SUBCATEGORIES.keys()
|
|
}
|
|
all_corrections = []
|
|
for sub, corrections in subject_corrections.items():
|
|
for subcat in self.SUBJECT_TO_SUBCATEGORIES[sub]:
|
|
subcategory_corrections[subcat].extend(corrections)
|
|
for cat, subcats in self.CATEGORY_TO_SUBCATEGORIES.items():
|
|
if subcat in subcats:
|
|
category_corrections[cat].extend(corrections)
|
|
all_corrections.extend(corrections)
|
|
|
|
for subject, corrections in subject_corrections.items():
|
|
acc = np.mean(corrections) * 100
|
|
logger.info(
|
|
f"Average accuracy {acc:.2f} ({len(corrections)}) - {subject}")
|
|
|
|
for subcat, corrections in subcategory_corrections.items():
|
|
acc = np.mean(corrections) * 100
|
|
logger.info(
|
|
f"Average accuracy {acc:.2f} ({len(corrections)}) - {subcat}")
|
|
|
|
for cat, corrections in category_corrections.items():
|
|
acc = np.mean(corrections) * 100
|
|
logger.info(
|
|
f"Average accuracy {acc:.2f} ({len(corrections)}) - {cat}")
|
|
|
|
weighted_acc = np.mean(all_corrections) * 100
|
|
logger.info(
|
|
f"MMLU weighted average accuracy: {weighted_acc:.2f} ({len(all_corrections)})"
|
|
)
|
|
return weighted_acc
|
|
|
|
@click.command("mmlu")
|
|
@click.option(
|
|
"--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to MMLU dataset. The commands to prepare the dataset: "
|
|
"wget https://people.eecs.berkeley.edu/~hendrycks/data.tar && tar -xf data.tar. "
|
|
"If unspecified, the dataset is downloaded automatically.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--num_fewshot",
|
|
type=int,
|
|
default=5,
|
|
help="Number of fewshot.")
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4094,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=2,
|
|
help="Maximum generation length.")
|
|
@click.option("--check_accuracy", is_flag=True, default=False)
|
|
@click.option("--accuracy_threshold", type=float, default=30)
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, dataset_path: Optional[str], num_samples: int,
|
|
num_fewshot: int, random_seed: int, apply_chat_template: bool,
|
|
system_prompt: Optional[str], max_input_length: int,
|
|
max_output_length: int, check_accuracy: bool,
|
|
accuracy_threshold: float) -> None:
|
|
llm: Union[LLM, PyTorchLLM] = ctx.obj
|
|
sampling_params = SamplingParams(
|
|
max_tokens=max_output_length,
|
|
truncate_prompt_tokens=max_input_length)
|
|
evaluator = MMLU(dataset_path,
|
|
num_samples=num_samples,
|
|
num_fewshot=num_fewshot,
|
|
random_seed=random_seed,
|
|
apply_chat_template=apply_chat_template,
|
|
system_prompt=system_prompt)
|
|
accuracy = evaluator.evaluate(llm, sampling_params)
|
|
llm.shutdown()
|
|
|
|
if check_accuracy:
|
|
logger.warning(
|
|
"The --check_accuracy flag is not expected to be used anymore. "
|
|
"It is being used by some legacy accuracy tests that call evaluation commands via subprocess. "
|
|
"New accuracy tests should use LLM API within the pytest process; please see `tests/integration/defs/accuracy/README.md`."
|
|
)
|
|
assert accuracy >= accuracy_threshold, f"Expected accuracy >= {accuracy_threshold}, but got {accuracy}."
|