TensorRT-LLMs/features/auto_deploy/auto-deploy.html
2025-12-23 02:41:11 +00:00

763 lines
41 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>AutoDeploy (Prototype) &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'features/auto_deploy/auto-deploy';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc6';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Ray Orchestrator (Prototype)" href="../ray-orchestrator.html" />
<link rel="prev" title="Checkpoint Loading" href="../checkpoint-loading.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc6" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../index.html">
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../index.html">
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_responses_client.html">Curl Responses Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_responses_client.html">OpenAI Responses Client</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-qwen3-on-trtllm.html">Deployment Guide for Qwen3 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deployment-guide/deployment-guide-for-kimi-k2-thinking-on-trtllm.html">Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../guided-decoding.html">Guided Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
<li class="toctree-l1"><a class="reference internal" href="../helix.html">Helix Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../kv-cache-connector.html">KV Cache Connector</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">AutoDeploy (Prototype)</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="autodeploy-prototype">
<h1>AutoDeploy (Prototype)<a class="headerlink" href="#autodeploy-prototype" title="Link to this heading">#</a></h1>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This project is under active development and is currently in a prototype stage. The code is a prototype, subject to change, and may include backward-incompatible updates. While we strive for correctness, there are no guarantees regarding functionality, stability, or reliability.</p>
</div>
<section id="seamless-model-deployment-from-pytorch-to-tensorrt-llm">
<h2>Seamless Model Deployment from PyTorch to TensorRT LLM<a class="headerlink" href="#seamless-model-deployment-from-pytorch-to-tensorrt-llm" title="Link to this heading">#</a></h2>
<p>AutoDeploy is a prototype designed to simplify and accelerate the deployment of PyTorch models, including off-the-shelf models such as those from the Hugging Face Transformers library, to TensorRT LLM.</p>
<p><img alt="AutoDeploy overview" src="../../_images/ad_overview.png" />
<sub><em>AutoDeploy overview and relation with TensorRT LLMs LLM API</em></sub></p>
<p>AutoDeploy provides an alternative method for deploying models using the LLM API without requiring code changes to the source model (for example, Hugging Face Transformers models) or manual implementation of inference optimizations, such as KV-caches, multi-GPU parallelism, or quantization. Instead, AutoDeploy extracts a computation graph from the source model and applies inference optimizations through a series of automated graph transformations. AutoDeploy generates an inference-optimized graph that can be directly executed in the TensorRT LLM PyTorch runtime and leverages various runtime optimizations including in-flight batching, paging, and overlap scheduling.</p>
</section>
<section id="key-features">
<h2>Key Features<a class="headerlink" href="#key-features" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><strong>Seamless Model Translation:</strong> Automatically converts PyTorch/Hugging Face models to TensorRT LLM without manual rewrites.</p></li>
<li><p><strong>Unified Model Definition:</strong> Maintain a single source of truth with your original PyTorch/Hugging Face model.</p></li>
<li><p><strong>Optimized Inference:</strong> Built-in transformations for sharding, quantization, KV-cache integration, MHA fusion, and CudaGraph optimization.</p></li>
<li><p><strong>Immediate Deployment:</strong> Day-0 support for models with continuous performance enhancements.</p></li>
<li><p><strong>Quick Setup &amp; Prototyping:</strong> Lightweight pip package for easy installation with a demo environment for fast testing.</p></li>
</ul>
</section>
<section id="get-started">
<h2>Get Started<a class="headerlink" href="#get-started" title="Link to this heading">#</a></h2>
<ol class="arabic simple">
<li><p><strong>Install AutoDeploy:</strong></p></li>
</ol>
<p>AutoDeploy is included with the TRT-LLM installation.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>sudo<span class="w"> </span>apt-get<span class="w"> </span>-y<span class="w"> </span>install<span class="w"> </span>libopenmpi-dev<span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span>pip3<span class="w"> </span>install<span class="w"> </span>--upgrade<span class="w"> </span>pip<span class="w"> </span>setuptools<span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span>pip3<span class="w"> </span>install<span class="w"> </span>tensorrt_llm
</pre></div>
</div>
<p>You can refer to <a class="reference internal" href="../../installation/linux.html"><span class="std std-doc">TRT-LLM installation guide</span></a> for more information.</p>
<ol class="arabic simple" start="2">
<li><p><strong>Run Llama Example:</strong></p></li>
</ol>
<p>You are now ready to run an in-framework LLama Demo.</p>
<p>The general entry point for running the AutoDeploy demo is the <code class="docutils literal notranslate"><span class="pre">build_and_run_ad.py</span></code> script, Checkpoints are loaded directly from Huggingface (HF) or a local HF-like directory:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">cd</span><span class="w"> </span>examples/auto_deploy
python<span class="w"> </span>build_and_run_ad.py<span class="w"> </span>--model<span class="w"> </span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span>
</pre></div>
</div>
</section>
<section id="support-matrix">
<h2>Support Matrix<a class="headerlink" href="#support-matrix" title="Link to this heading">#</a></h2>
<p>AutoDeploy streamlines the model deployment process through an automated workflow designed for efficiency and performance. The workflow begins with a PyTorch model, which is exported using <code class="docutils literal notranslate"><span class="pre">torch.export</span></code> to generate a standard Torch graph. This graph contains core PyTorch ATen operations alongside custom attention operations, determined by the attention backend specified in the configuration.</p>
<p>The exported graph then undergoes a series of automated transformations, including graph sharding, KV-cache insertion, and GEMM fusion, to optimize model performance. After these transformations, the graph is compiled using one of the supported compile backends (like <code class="docutils literal notranslate"><span class="pre">torch-opt</span></code>), followed by deploying it via the TensorRT LLM runtime.</p>
<ul class="simple">
<li><p><a class="reference internal" href="support_matrix.html"><span class="std std-doc">Support Matrix</span></a></p></li>
</ul>
</section>
<section id="advanced-usage">
<h2>Advanced Usage<a class="headerlink" href="#advanced-usage" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><a class="reference internal" href="advanced/example_run.html"><span class="std std-doc">Example Run Script</span></a></p></li>
<li><p><a class="reference internal" href="advanced/logging.html"><span class="std std-doc">Logging Level</span></a></p></li>
<li><p><a class="reference internal" href="advanced/workflow.html"><span class="std std-doc">Incorporating AutoDeploy into Your Own Workflow</span></a></p></li>
<li><p><a class="reference internal" href="advanced/expert_configurations.html"><span class="std std-doc">Expert Configurations</span></a></p></li>
<li><p><a class="reference internal" href="advanced/benchmarking_with_trtllm_bench.html"><span class="std std-doc">Performance Benchmarking</span></a></p></li>
</ul>
</section>
<section id="roadmap">
<h2>Roadmap<a class="headerlink" href="#roadmap" title="Link to this heading">#</a></h2>
<p>We are actively expanding AutoDeploy to support a broader range of model architectures and inference features.</p>
<p><strong>Upcoming Model Support:</strong></p>
<ul class="simple">
<li><p>Vision-Language Models (VLMs)</p></li>
<li><p>Structured State Space Models (SSMs) and Linear Attention architectures</p></li>
</ul>
<p><strong>Planned Features:</strong></p>
<ul class="simple">
<li><p>Low-Rank Adaptation (LoRA)</p></li>
<li><p>Speculative Decoding for accelerated generation</p></li>
</ul>
<p>To track development progress and contribute, visit our <a class="reference external" href="https://github.com/orgs/NVIDIA/projects/83/views/13">Github Project Board</a>.
We welcome community contributions, see <code class="docutils literal notranslate"><span class="pre">examples/auto_deploy/CONTRIBUTING.md</span></code> for guidelines.</p>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="../checkpoint-loading.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Checkpoint Loading</p>
</div>
</a>
<a class="right-next"
href="../ray-orchestrator.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Ray Orchestrator (Prototype)</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#seamless-model-deployment-from-pytorch-to-tensorrt-llm">Seamless Model Deployment from PyTorch to TensorRT LLM</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#key-features">Key Features</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#get-started">Get Started</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#support-matrix">Support Matrix</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#advanced-usage">Advanced Usage</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#roadmap">Roadmap</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on December 15, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/9ba1426">9ba1426</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>