TensorRT-LLMs/examples/infinitebench/compute_scores.py
Kaiyu Xie f430a4b447
Update TensorRT-LLM (#1688)
* Update TensorRT-LLM

---------

Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com>
Co-authored-by: CoderHam <hemant@cohere.com>
Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
2024-05-28 20:07:49 +08:00

200 lines
5.9 KiB
Python

# MIT License
# Copyright (c) 2023 OpenBMB
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://github.com/OpenBMB/InfiniteBench/blob/main/src/compute_scores.py
import json
import re
import string
from collections import Counter
from pathlib import Path
from tqdm import tqdm
from .args import parse_args
def normalize_answer(s: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth) -> tuple[float, float, float]:
common = Counter(prediction) & Counter(ground_truth)
num_same = sum(common.values())
if num_same == 0:
return 0, 0, 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(ground_truth)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def load_json(fname):
return json.load(open(fname))
def iter_jsonl(fname, cnt=None):
i = 0
with open(fname, "r", encoding="utf8") as fin:
for line in fin:
if line.strip() == "": # Skip empty lines
continue
if i == cnt:
break
if line.strip() == "": # Skip empty lines
continue
yield json.loads(line)
i += 1
def first_int_match(prediction):
pred_list = re.split("[^0-9]", prediction)
pred_value = ""
for item in pred_list:
if item != "":
pred_value = item
break
return pred_value
def split_retrieval_answer(pred: str):
for c in ["\n", ":", '"', "'", ".", ",", "?", "!", "{", "}"]:
pred = pred.replace(c, " ")
words = pred.split()
return words
def get_score_one_kv_retrieval(pred, label) -> bool:
for c in ['\n', ':', '\"', '\'', '.', ',', '?', '!', '{', '}']:
pred = pred.replace(c, ' ')
words = pred.split()
return label in words
def get_score_one_passkey(pred, label) -> bool:
if isinstance(label, list):
label = label[0]
return label == first_int_match(pred)
def get_score_one(pred: str, label: str, task_name: str) -> float:
"""
Computes the score for one prediction.
Returns one float (zero and one for boolean values).
"""
NAME_TO_SCORE_GETTER = {
# Retrieve
"kv_retrieval": get_score_one_kv_retrieval,
"kv_retrieval_prefix": get_score_one_kv_retrieval,
"kv_retrieval_both": get_score_one_kv_retrieval,
"passkey": get_score_one_passkey,
}
assert task_name in NAME_TO_SCORE_GETTER, f"Invalid task name: {task_name}"
score = NAME_TO_SCORE_GETTER[task_name](pred, label)
return float(score)
def get_labels(preds: list) -> list[str]:
possible_label_keys = ["ground_truth", "label"]
for label_key in possible_label_keys:
if label_key in preds[0]:
return [x.get(label_key, "XXXXXXXXXX") for x in preds]
raise ValueError(f"Cannot find label in {preds[0]}")
def get_preds(preds: list, data_name: str) -> list[str]:
pred_strings = []
possible_pred_keys = ["prediction", "pred"]
for pred in preds:
this_pred = "NO PREDICTION"
for pred_key in possible_pred_keys:
if pred_key in pred:
this_pred = pred[pred_key]
break
else:
raise ValueError(f"Cannot find prediction in {pred}")
pred_strings.append(this_pred)
return pred_strings
def get_score(labels: list, preds: list, data_name: str) -> float:
"""
Computes the average score for a task.
"""
assert len(labels) == len(preds)
scores = []
for label, pred in tqdm(zip(labels, preds)):
score = get_score_one(pred, label, data_name)
scores.append(score)
return sum(scores) / len(scores)
def load_json(preds_path):
assert preds_path.exists(), f"Predictions not found in: {preds_path}"
print("Loading prediction results from", preds_path)
return list(iter_jsonl(preds_path))
def compute_scores(preds, data_name: str):
labels = get_labels(preds)
preds = get_preds(preds, data_name)
acc = get_score(labels, preds, data_name)
return acc
ALL_TASKS = [
"passkey",
"kv_retrieval",
]
if __name__ == "__main__":
arguments = parse_args()
tasks = [arguments.task]
for task in tasks:
preds_path = Path(arguments.preds_file)
preds = load_json(preds_path)
acc = compute_scores(preds, task)
print(acc)