mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: IbrahimAmin <ibrahimamin532@gmail.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com> Co-authored-by: Pzzzzz <hello-cd.plus@hotmail.com> Co-authored-by: CoderHam <hemant@cohere.com> Co-authored-by: Konstantin Lopuhin <kostia.lopuhin@gmail.com>
200 lines
5.9 KiB
Python
200 lines
5.9 KiB
Python
# MIT License
|
|
|
|
# Copyright (c) 2023 OpenBMB
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# reference: https://github.com/OpenBMB/InfiniteBench/blob/main/src/compute_scores.py
|
|
|
|
import json
|
|
import re
|
|
import string
|
|
from collections import Counter
|
|
from pathlib import Path
|
|
|
|
from tqdm import tqdm
|
|
|
|
from .args import parse_args
|
|
|
|
|
|
def normalize_answer(s: str) -> str:
|
|
"""Lower text and remove punctuation, articles and extra whitespace."""
|
|
|
|
def remove_articles(text):
|
|
return re.sub(r"\b(a|an|the)\b", " ", text)
|
|
|
|
def white_space_fix(text):
|
|
return " ".join(text.split())
|
|
|
|
def remove_punc(text):
|
|
exclude = set(string.punctuation)
|
|
return "".join(ch for ch in text if ch not in exclude)
|
|
|
|
def lower(text):
|
|
return text.lower()
|
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
|
|
|
|
|
def f1_score(prediction, ground_truth) -> tuple[float, float, float]:
|
|
common = Counter(prediction) & Counter(ground_truth)
|
|
num_same = sum(common.values())
|
|
if num_same == 0:
|
|
return 0, 0, 0
|
|
precision = 1.0 * num_same / len(prediction)
|
|
recall = 1.0 * num_same / len(ground_truth)
|
|
f1 = (2 * precision * recall) / (precision + recall)
|
|
return f1, precision, recall
|
|
|
|
|
|
def load_json(fname):
|
|
return json.load(open(fname))
|
|
|
|
|
|
def iter_jsonl(fname, cnt=None):
|
|
i = 0
|
|
with open(fname, "r", encoding="utf8") as fin:
|
|
for line in fin:
|
|
if line.strip() == "": # Skip empty lines
|
|
continue
|
|
if i == cnt:
|
|
break
|
|
if line.strip() == "": # Skip empty lines
|
|
continue
|
|
yield json.loads(line)
|
|
i += 1
|
|
|
|
|
|
def first_int_match(prediction):
|
|
pred_list = re.split("[^0-9]", prediction)
|
|
pred_value = ""
|
|
for item in pred_list:
|
|
if item != "":
|
|
pred_value = item
|
|
break
|
|
return pred_value
|
|
|
|
|
|
def split_retrieval_answer(pred: str):
|
|
for c in ["\n", ":", '"', "'", ".", ",", "?", "!", "{", "}"]:
|
|
pred = pred.replace(c, " ")
|
|
words = pred.split()
|
|
return words
|
|
|
|
|
|
def get_score_one_kv_retrieval(pred, label) -> bool:
|
|
for c in ['\n', ':', '\"', '\'', '.', ',', '?', '!', '{', '}']:
|
|
pred = pred.replace(c, ' ')
|
|
words = pred.split()
|
|
return label in words
|
|
|
|
|
|
def get_score_one_passkey(pred, label) -> bool:
|
|
if isinstance(label, list):
|
|
label = label[0]
|
|
return label == first_int_match(pred)
|
|
|
|
|
|
def get_score_one(pred: str, label: str, task_name: str) -> float:
|
|
"""
|
|
Computes the score for one prediction.
|
|
Returns one float (zero and one for boolean values).
|
|
"""
|
|
NAME_TO_SCORE_GETTER = {
|
|
# Retrieve
|
|
"kv_retrieval": get_score_one_kv_retrieval,
|
|
"kv_retrieval_prefix": get_score_one_kv_retrieval,
|
|
"kv_retrieval_both": get_score_one_kv_retrieval,
|
|
"passkey": get_score_one_passkey,
|
|
}
|
|
assert task_name in NAME_TO_SCORE_GETTER, f"Invalid task name: {task_name}"
|
|
score = NAME_TO_SCORE_GETTER[task_name](pred, label)
|
|
return float(score)
|
|
|
|
|
|
def get_labels(preds: list) -> list[str]:
|
|
possible_label_keys = ["ground_truth", "label"]
|
|
for label_key in possible_label_keys:
|
|
if label_key in preds[0]:
|
|
return [x.get(label_key, "XXXXXXXXXX") for x in preds]
|
|
raise ValueError(f"Cannot find label in {preds[0]}")
|
|
|
|
|
|
def get_preds(preds: list, data_name: str) -> list[str]:
|
|
pred_strings = []
|
|
possible_pred_keys = ["prediction", "pred"]
|
|
for pred in preds:
|
|
this_pred = "NO PREDICTION"
|
|
for pred_key in possible_pred_keys:
|
|
if pred_key in pred:
|
|
this_pred = pred[pred_key]
|
|
break
|
|
else:
|
|
raise ValueError(f"Cannot find prediction in {pred}")
|
|
pred_strings.append(this_pred)
|
|
return pred_strings
|
|
|
|
|
|
def get_score(labels: list, preds: list, data_name: str) -> float:
|
|
"""
|
|
Computes the average score for a task.
|
|
"""
|
|
assert len(labels) == len(preds)
|
|
scores = []
|
|
for label, pred in tqdm(zip(labels, preds)):
|
|
score = get_score_one(pred, label, data_name)
|
|
scores.append(score)
|
|
return sum(scores) / len(scores)
|
|
|
|
|
|
def load_json(preds_path):
|
|
assert preds_path.exists(), f"Predictions not found in: {preds_path}"
|
|
print("Loading prediction results from", preds_path)
|
|
return list(iter_jsonl(preds_path))
|
|
|
|
|
|
def compute_scores(preds, data_name: str):
|
|
labels = get_labels(preds)
|
|
preds = get_preds(preds, data_name)
|
|
|
|
acc = get_score(labels, preds, data_name)
|
|
return acc
|
|
|
|
|
|
ALL_TASKS = [
|
|
"passkey",
|
|
"kv_retrieval",
|
|
]
|
|
|
|
if __name__ == "__main__":
|
|
arguments = parse_args()
|
|
tasks = [arguments.task]
|
|
for task in tasks:
|
|
preds_path = Path(arguments.preds_file)
|
|
preds = load_json(preds_path)
|
|
acc = compute_scores(preds, task)
|
|
print(acc)
|