mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
|
|
||
|---|---|---|
| .. | ||
| out_of_tree_example | ||
| quickstart_advanced.py | ||
| quickstart_multimodal.py | ||
| quickstart.py | ||
| README.md | ||
| star_attention.py | ||
TRT-LLM with PyTorch
Run the quick start script:
python3 quickstart.py
Run the advanced usage example script:
# BF16
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct
# FP8
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8
# BF16 + TP=2
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct --tp_size 2
# FP8 + TP=2
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --tp_size 2
# FP8(e4m3) kvcache
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --kv_cache_dtype fp8
Run the multimodal example script:
# default inputs
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality image [--use_cuda_graph]
# user inputs
# supported modes:
# (1) N prompt, N media (N requests are in-flight batched)
# (2) 1 prompt, N media
# Note: media should be either image or video. Mixing image and video is not supported.
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality video --prompt "Tell me what you see in the video briefly." "Describe the scene in the video briefly." --media "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/OAI-sora-tokyo-walk.mp4" "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/world.mp4" --max_tokens 128 [--use_cuda_graph]