mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-01 08:41:13 +08:00
273 lines
12 KiB
Python
273 lines
12 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module test_bloom test bloom examples."""
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.conftest import skip_post_blackwell
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
@pytest.mark.parametrize("num_beams", [1, 2, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("use_gpt_plugin", [True, False],
|
|
ids=["enable_gpt_plugin", "disable_gpt_plugin"])
|
|
@pytest.mark.parametrize("use_gemm_plugin", [True, False],
|
|
ids=["enable_gemm_plugin", "disable_gemm_plugin"])
|
|
@pytest.mark.parametrize("use_weight_only", [True, False],
|
|
ids=["enable_weight_only", "disable_weight_only"])
|
|
def test_llm_bloom_560m_1node_1gpus(bloom_example_root,
|
|
llm_bloom_560m_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, use_gpt_plugin,
|
|
use_gemm_plugin, use_weight_only,
|
|
num_beams):
|
|
"Build & Run bloom 560m with one gpu"
|
|
print("Building engines...")
|
|
dtype = "float16"
|
|
model_name = "bloom-560M-weight_only" if use_weight_only else "bloom-560M"
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=bloom_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_bloom_560m_model_root,
|
|
data_type=dtype,
|
|
use_weight_only=use_weight_only)
|
|
build_cmd = [
|
|
"trtllm-build", f"--checkpoint_dir={model_dir}", f"--max_batch_size=1",
|
|
f"--max_input_len=1024", f"--max_num_tokens=1024",
|
|
f"--output_dir={engine_dir}", f"--max_beam_width={num_beams}"
|
|
]
|
|
if use_gpt_plugin:
|
|
build_cmd.append(f"--gpt_attention_plugin={dtype}")
|
|
build_cmd.append("--remove_input_padding=enable")
|
|
else:
|
|
build_cmd.append(f"--gpt_attention_plugin=disable")
|
|
build_cmd.append(f"--paged_kv_cache=disable")
|
|
build_cmd.append(f"--remove_input_padding=disable")
|
|
|
|
if use_gemm_plugin:
|
|
build_cmd.append(f"--gemm_plugin={dtype}")
|
|
else:
|
|
build_cmd.append(f"--gemm_plugin=disable")
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print('Run bloom 560m...')
|
|
summary_cmd = generate_summary_cmd(bloom_example_root,
|
|
hf_model_dir=llm_bloom_560m_model_root,
|
|
data_type="fp16",
|
|
engine_dir=engine_dir,
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold="13.8",
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@skip_post_blackwell
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("per_token_channel", [True, False],
|
|
ids=["enable_ptpc", "disable_ptpc"])
|
|
def test_llm_bloom_560m_smooth_single_gpu_summary(bloom_example_root, llm_venv,
|
|
llm_bloom_560m_model_root,
|
|
llm_datasets_root,
|
|
llm_rouge_root, cmodel_dir,
|
|
per_token_channel, engine_dir,
|
|
num_beams):
|
|
"bloom-560m-smooth test on single gpu"
|
|
dtype = "float16"
|
|
per_channel = per_token = False
|
|
|
|
if per_token_channel:
|
|
per_channel = per_token = True
|
|
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=bloom_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="bloom-smooth",
|
|
model_path=llm_bloom_560m_model_root,
|
|
data_type=dtype,
|
|
smoothquant=0.5,
|
|
per_channel=per_channel,
|
|
per_token=per_token,
|
|
calib_dataset=f"{llm_datasets_root}/cimec/lambada")
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build", f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}", f"--gpt_attention_plugin={dtype}",
|
|
f"--max_beam_width={num_beams}"
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Running inference...")
|
|
summary_cmd = generate_summary_cmd(bloom_example_root,
|
|
hf_model_dir=llm_bloom_560m_model_root,
|
|
data_type="fp16",
|
|
engine_dir=engine_dir,
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold="13",
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
def test_llm_bloom_560m_1node_2gpus(bloom_example_root,
|
|
llm_bloom_560m_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, num_beams):
|
|
"Build & Run bloom 560m with two gpus"
|
|
print("Building engines...")
|
|
dtype = 'float16'
|
|
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=bloom_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="bloom-560M",
|
|
model_path=llm_bloom_560m_model_root,
|
|
data_type=dtype,
|
|
gpus=2)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--max_beam_width={num_beams}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--workers={2}",
|
|
f"--max_batch_size={8}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
"--paged_kv_cache=enable",
|
|
"--remove_input_padding=enable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print('Run bloom 560m...')
|
|
summary_cmd = generate_summary_cmd(bloom_example_root,
|
|
hf_model_dir=llm_bloom_560m_model_root,
|
|
data_type="fp16",
|
|
num_beams=num_beams,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold="14",
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("embedding_sharding_dim", [0, 1])
|
|
def test_llm_bloom_176b_1node_8gpus(bloom_example_root,
|
|
llm_bloom_176b_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
engine_dir, embedding_sharding_dim,
|
|
num_beams, cmodel_dir):
|
|
"""
|
|
Build & Run bloom 176b with 8 gpus.
|
|
This case don't support disabled plugins
|
|
"""
|
|
print("Building engines...")
|
|
|
|
dtype = 'float16'
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=bloom_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="bloom-176B",
|
|
model_path=llm_bloom_176b_model_root,
|
|
data_type=dtype,
|
|
gpus=8,
|
|
tp_size=8,
|
|
use_parallel_embedding=True,
|
|
embedding_sharding_dim=embedding_sharding_dim,
|
|
workers=8)
|
|
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--max_beam_width={num_beams}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--workers={8}",
|
|
f"--max_batch_size={8}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print('Run bloom 176b...')
|
|
summary_cmd = generate_summary_cmd(bloom_example_root,
|
|
hf_model_dir=llm_bloom_176b_model_root,
|
|
data_type="fp16",
|
|
num_beams=num_beams,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "8", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@skip_post_blackwell
|
|
def test_llm_bloom_560m_int8_kv_single_gpu_summary(bloom_example_root,
|
|
llm_bloom_560m_model_root,
|
|
llm_datasets_root,
|
|
llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir):
|
|
"bloom-560m with int8 kv test on single gpu"
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=bloom_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="bloom-560m-kv",
|
|
model_path=llm_bloom_560m_model_root,
|
|
int8_kv_cache=True,
|
|
use_weight_only=True,
|
|
calib_dataset=f"{llm_datasets_root}/cimec/lambada")
|
|
|
|
print("Building engines...")
|
|
dtype = 'float16'
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Running inference...")
|
|
summary_cmd = generate_summary_cmd(bloom_example_root,
|
|
hf_model_dir=llm_bloom_560m_model_root,
|
|
data_type="fp16",
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root,
|
|
tensorrt_llm_rouge1_threshold=14)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|