TensorRT-LLMs/tests/integration/defs/examples/test_falcon.py
Kaiyu Xie 2631f21089
Update (#2978)
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2025-03-23 16:39:35 +08:00

720 lines
29 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
venv_mpi_check_call)
from defs.conftest import skip_fp8_pre_ada, skip_pre_ada
from defs.trt_test_alternative import check_call
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize(
"use_gpt_attention_plugin", [True, False],
ids=["enable_attention_plugin", "disable_attention_plugin"])
@pytest.mark.parametrize("context_fmha_type",
["enabled", "enabled_with_fp32_acc", "disabled"])
@pytest.mark.parametrize("dtype", ['float16', 'bfloat16'])
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_rw_1b_1node_1gpus(
falcon_example_root, llm_falcon_rw_1b_model_root, llm_datasets_root,
llm_rouge_root, llm_venv, cmodel_dir, engine_dir,
use_gpt_attention_plugin, context_fmha_type, dtype, use_py_session,
num_beams):
# Build & Run falcon-rw-1b with one gpu
print("Converting checkpoint...")
model_name = os.path.basename(llm_falcon_rw_1b_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=falcon_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_falcon_rw_1b_model_root,
data_type=dtype)
print("Building engines...")
build_cmd = [
"trtllm-build ",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={5}",
f"--gemm_plugin={dtype}",
"--gather_context_logits",
]
if use_gpt_attention_plugin:
build_cmd.append(f"--gpt_attention_plugin={dtype}")
else:
build_cmd.extend([
"--gpt_attention_plugin=disable",
"--context_fmha=disable",
"--paged_kv_cache=disable",
"--remove_input_padding=disable",
])
if context_fmha_type == "enabled":
build_cmd.append("--context_fmha=enable")
elif context_fmha_type == "disabled":
build_cmd.append("--context_fmha=disable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-rw-1b...')
data_type = "fp16" if dtype == "float16" else "bf16"
# disable kv cache reuse for now.
# TODO(tjohnsen) enable kv cache reuse when https://nvbugspro.nvidia.com/bug/5048858 fixed
summary_cmd = [
f"{falcon_example_root}/../summarize.py",
"--test_trt_llm",
"--hf_model_dir",
llm_falcon_rw_1b_model_root,
"--engine_dir",
engine_dir,
"--data_type",
data_type,
"--check_accuracy",
f"--num_beams={num_beams}",
"--eval_ppl",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
'--kv_cache_free_gpu_memory_fraction=0.5',
"--no-kv_cache_enable_block_reuse",
]
if use_py_session:
summary_cmd.extend(["--use_py_session"])
if context_fmha_type == "enabled_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.skip_less_device_memory(50000)
@pytest.mark.skip_less_host_memory(500000)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("embedding_sharding_dim", [-1, 0, 1],
ids=[
"disable_parallel_embedding",
"embedding_sharding_dim:0",
"embedding_sharding_dim:1"
])
@pytest.mark.parametrize(
"use_gpt_attention_plugin", [True, False],
ids=["enable_attention_plugin", "disable_attention_plugin"])
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_rw_1b_1node_2gpus(
falcon_example_root, llm_falcon_rw_1b_model_root, llm_datasets_root,
llm_rouge_root, llm_venv, cmodel_dir, engine_dir,
embedding_sharding_dim, use_gpt_attention_plugin, use_py_session,
num_beams):
# Test for Falcon ALiBi on TP>1
print("Converting checkpoint...")
dtype = 'float16'
# Disable parallel embedding if embedding_sharding_dim < 0
use_parallel_embedding = (embedding_sharding_dim >= 0)
embedding_sharding_dim = max(0, embedding_sharding_dim)
model_name = os.path.basename(llm_falcon_rw_1b_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=falcon_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_falcon_rw_1b_model_root,
data_type=dtype,
gpus=2,
tp_size=2,
use_parallel_embedding=use_parallel_embedding,
embedding_sharding_dim=embedding_sharding_dim)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={5}",
f"--gemm_plugin={dtype}",
]
if use_gpt_attention_plugin:
build_cmd.append(f"--gpt_attention_plugin={dtype}")
else:
build_cmd.extend([
"--gpt_attention_plugin=disable",
"--context_fmha=disable",
"--paged_kv_cache=disable",
"--remove_input_padding=disable",
])
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-rw-1b...')
# Reference Rouge1 score (HF): 1=15.62, 2=18.82, 4=20.26
rouge1_threshold = {1: 14.85, 2: 17.8, 4: 19}[num_beams]
summary_cmd = [
f"{falcon_example_root}/../summarize.py",
"--test_trt_llm",
"--hf_model_dir",
llm_falcon_rw_1b_model_root,
"--engine_dir",
engine_dir,
"--data_type",
"fp16",
"--check_accuracy",
f"--num_beams={num_beams}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
f"--tensorrt_llm_rouge1_threshold={rouge1_threshold}",
]
if use_py_session:
summary_cmd.extend(["--use_py_session"])
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.skip_less_device_memory(50000)
@pytest.mark.skip_less_host_memory(500000)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize("context_fmha_type",
["enabled", "enabled_with_fp32_acc", "disabled"])
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_40b_1node_2gpus(falcon_example_root,
llm_falcon_40b_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir, dtype,
context_fmha_type, use_py_session,
num_beams):
# Build & Run falcon 40b with two gpus
print("Converting checkpoint...")
model_name = os.path.basename(llm_falcon_40b_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=falcon_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_falcon_40b_model_root,
data_type=dtype,
gpus=2,
tp_size=2,
workers=2)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={5}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
]
if context_fmha_type == "enabled":
build_cmd.append("--context_fmha=enable")
elif context_fmha_type == "disabled":
build_cmd.append("--context_fmha=disable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon 40b...')
data_type = "fp16" if dtype == "float16" else "bf16"
summary_cmd = [
f"{falcon_example_root}/../summarize.py",
"--test_trt_llm",
"--hf_model_dir",
llm_falcon_40b_model_root,
"--engine_dir",
engine_dir,
"--data_type",
data_type,
"--check_accuracy",
f"--num_beams={num_beams}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
'--kv_cache_free_gpu_memory_fraction=0.8',
]
if use_py_session:
summary_cmd.extend(["--use_py_session"])
if context_fmha_type == "enabled_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
summary_cmd)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize("context_fmha_type",
["enabled", "enabled_with_fp32_acc", "disabled"])
@pytest.mark.parametrize("enable_block_reuse", [True, False],
ids=["enable_block_reuse", "disable_block_reuse"])
def test_llm_falcon_7b_1node_1gpus(falcon_example_root,
llm_falcon_7b_model_root, llm_datasets_root,
llm_venv, cmodel_dir, engine_dir, dtype,
context_fmha_type, enable_block_reuse,
num_beams, llm_rouge_root):
"Build & Run falcon-7b with one gpu"
if num_beams > 1 and enable_block_reuse:
pytest.skip(
"Block reuse is currently not supported with beam width > 1.")
print("Converting checkpoint...")
model_name = os.path.basename(llm_falcon_7b_model_root)
ckpt_dir = convert_weights(llm_venv,
falcon_example_root,
cmodel_dir,
model_name,
llm_falcon_7b_model_root,
data_type=dtype)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={5}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
"--gather_context_logits",
"--use_paged_context_fmha=enable",
]
if context_fmha_type == "enabled":
build_cmd.append("--context_fmha=enable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-7b...')
data_type = "fp16" if dtype == "float16" else "bf16"
summary_cmd = [
f"{falcon_example_root}/../summarize.py",
"--test_trt_llm",
"--hf_model_dir",
llm_falcon_7b_model_root,
"--engine_dir",
engine_dir,
"--data_type",
data_type,
"--check_accuracy",
f"--num_beams={num_beams}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
]
if enable_block_reuse:
summary_cmd.extend(["--kv_cache_enable_block_reuse"])
if context_fmha_type == "enabled_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(8)
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.skip_less_host_memory(1000000)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize("context_fmha_type",
["enabled", "enabled_with_fp32_acc", "disabled"])
@pytest.mark.parametrize(
"tp_pp_size", [(8, 1), (4, 2)],
ids=lambda tp_pp_size: f'tp{tp_pp_size[0]}pp{tp_pp_size[1]}')
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_180b_1node_8gpus(falcon_example_root,
llm_falcon_180b_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir, dtype,
context_fmha_type, tp_pp_size,
use_py_session, num_beams):
"Build & Run falcon 180b with 8 gpus"
print("Converting checkpoint...")
tp_size, pp_size = tp_pp_size
world_size = tp_size * pp_size
model_name = os.path.basename(llm_falcon_180b_model_root)
ckpt_dir = convert_weights(llm_venv=llm_venv,
example_root=falcon_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_falcon_180b_model_root,
data_type=dtype,
gpus=world_size,
tp_size=tp_size,
pp_size=pp_size,
load_by_shard=True,
workers=world_size)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={num_beams}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
f"--workers={world_size}",
]
if context_fmha_type == "enabled":
build_cmd.append("--context_fmha=enable")
elif context_fmha_type == "disabled":
build_cmd.append("--context_fmha=disable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon 180b...')
data_type = "fp16" if dtype == "float16" else "bf16"
summary_cmd = [
f"{falcon_example_root}/../summarize.py", "--test_trt_llm",
"--hf_model_dir", llm_falcon_180b_model_root, "--engine_dir",
engine_dir, "--data_type", data_type, "--check_accuracy",
f"--num_beams={num_beams}", f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}"
]
if use_py_session:
summary_cmd.extend(["--use_py_session"])
if context_fmha_type == "enabled_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "8", "--allow-run-as-root"],
summary_cmd)
@skip_pre_ada
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_rw_1b_fp8_1node_1gpus(falcon_example_root,
llm_falcon_rw_1b_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
use_py_session):
"Build & Run falcon-rw-1b fp8 with 1 gpu"
# Quantize HF falcon-rw-1b checkpoint into FP8 format
print("Quantizing and converting checkpoint...")
model_name = os.path.basename(llm_falcon_rw_1b_model_root)
dtype = "float16"
ckpt_dir = f"{cmodel_dir}/{model_name}/fp8/1-gpu"
quantize_cmd = [
f"{falcon_example_root}/../quantization/quantize.py",
f"--model_dir={llm_falcon_rw_1b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={dtype}",
"--qformat=fp8",
f"--output_dir={ckpt_dir}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-rw-1b...')
summary_cmd = generate_summary_cmd(falcon_example_root,
hf_model_dir=llm_falcon_rw_1b_model_root,
engine_dir=engine_dir,
data_type='fp16',
tensorrt_llm_rouge1_threshold=15.5,
use_py_session=use_py_session,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root,
max_ite=100)
venv_check_call(llm_venv, summary_cmd)
@skip_pre_ada
@pytest.mark.skip_less_device(8)
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.skip_less_host_memory(1000000)
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_180b_fp8_1node_8gpus(falcon_example_root,
llm_falcon_180b_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
use_py_session):
"Build & Run falcon 180b fp8 with 8 gpus"
# Quantize HF Falcon 180B checkpoint into FP8 format
print("Quantizing and converting checkpoint...")
model_name = os.path.basename(llm_falcon_180b_model_root)
dtype = "float16"
tp_size, pp_size = 8, 1
world_size = tp_size * pp_size
ckpt_dir = f"{cmodel_dir}/{model_name}/fp8/tp{tp_size}-pp{pp_size}"
quantize_cmd = [
f"{falcon_example_root}/../quantization/quantize.py",
f"--model_dir={llm_falcon_180b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={dtype}",
"--qformat=fp8",
f"--output_dir={ckpt_dir}",
"--calib_size=16",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
f"--workers={world_size}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon 180b...')
summary_cmd = generate_summary_cmd(falcon_example_root,
hf_model_dir=llm_falcon_180b_model_root,
engine_dir=engine_dir,
data_type='fp16',
use_py_session=use_py_session,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_mpi_check_call(llm_venv, [
"mpirun", "-n", f"{world_size}", "--allow-run-as-root",
"--oversubscribe"
], summary_cmd)
@pytest.mark.parametrize("quant_algo", ["w4a8_awq", "w4a16_awq"])
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_rw_1b_awq_1node_1gpus(falcon_example_root,
llm_falcon_rw_1b_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
quant_algo, use_py_session):
"Build & Run falcon-rw-1b int4_awq with 1 gpu"
skip_fp8_pre_ada("w4a8_awq" in quant_algo)
# Quantize HF falcon-rw-1b checkpoint into int4_awq format
print("Quantizing and converting checkpoint...")
model_name = os.path.basename(llm_falcon_rw_1b_model_root)
dtype = "float16"
qformat = "int4_awq" if quant_algo == "w4a16_awq" else quant_algo
ckpt_dir = f"{cmodel_dir}/{model_name}/{quant_algo}/1-gpu"
quantize_cmd = [
f"{falcon_example_root}/../quantization/quantize.py",
f"--model_dir={llm_falcon_rw_1b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--output_dir={ckpt_dir}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
"--remove_input_padding=enable",
"--context_fmha=enable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-rw-1b...')
summary_cmd = generate_summary_cmd(falcon_example_root,
hf_model_dir=llm_falcon_rw_1b_model_root,
engine_dir=engine_dir,
data_type='fp16',
tensorrt_llm_rouge1_threshold=13.5,
use_py_session=use_py_session,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.skip_less_device_memory(80000)
@pytest.mark.skip_less_host_memory(1000000)
@pytest.mark.parametrize("quant_algo", ["w4a8_awq", "w4a16_awq"])
@pytest.mark.parametrize("use_py_session", [False, True],
ids=["use_cpp_session", "use_py_session"])
def test_llm_falcon_180b_awq_1node_2gpus(falcon_example_root,
llm_falcon_180b_model_root,
llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir,
quant_algo, use_py_session):
"Build & Run falcon 180b int4_awq with 2 gpus"
skip_fp8_pre_ada("w4a8_awq" in quant_algo)
# Quantize HF Falcon 180B checkpoint into int4_awq format
print("Quantizing and converting checkpoint...")
model_name = os.path.basename(llm_falcon_180b_model_root)
dtype = "float16"
qformat = "int4_awq" if quant_algo == "w4a16_awq" else quant_algo
tp_size, pp_size = 2, 1
world_size = tp_size * pp_size
ckpt_dir = f"{cmodel_dir}/{model_name}/{quant_algo}/tp{tp_size}-pp{pp_size}"
quantize_cmd = [
f"{falcon_example_root}/../quantization/quantize.py",
f"--model_dir={llm_falcon_180b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--output_dir={ckpt_dir}",
"--calib_size=16",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
f"--workers={world_size}",
"--remove_input_padding=enable",
"--context_fmha=enable",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon 180b...')
summary_cmd = generate_summary_cmd(falcon_example_root,
hf_model_dir=llm_falcon_180b_model_root,
engine_dir=engine_dir,
data_type='fp16',
use_py_session=use_py_session,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root)
venv_mpi_check_call(llm_venv, [
"mpirun", "-n", f"{world_size}", "--allow-run-as-root",
"--oversubscribe"
], summary_cmd)
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
@pytest.mark.parametrize("context_fmha_type",
["enabled", "enabled_with_fp32_acc", "disabled"])
@pytest.mark.parametrize("enable_block_reuse", [True, False],
ids=["enable_block_reuse", "disable_block_reuse"])
def test_llm_falcon_11b_1node_1gpus(falcon_example_root,
llm_falcon_11b_model_root,
llm_datasets_root, llm_venv, cmodel_dir,
engine_dir, dtype, context_fmha_type,
enable_block_reuse, num_beams,
llm_rouge_root):
"Build & Run falcon-11B with one gpu"
if num_beams > 1 and enable_block_reuse:
pytest.skip(
"Block reuse is currently not supported with beam width > 1.")
print("Converting checkpoint...")
model_name = os.path.basename(llm_falcon_11b_model_root)
ckpt_dir = convert_weights(llm_venv,
falcon_example_root,
cmodel_dir,
model_name,
llm_falcon_11b_model_root,
data_type=dtype)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
f"--max_batch_size={8}",
f"--max_input_len={924}",
f"--max_seq_len={1024}",
f"--max_beam_width={5}",
"--remove_input_padding=enable",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
"--gather_context_logits",
"--use_paged_context_fmha=enable",
]
if context_fmha_type == "enabled":
build_cmd.append("--context_fmha=enable")
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print('Run falcon-11B...')
data_type = "fp16" if dtype == "float16" else "bf16"
summary_cmd = [
f"{falcon_example_root}/../summarize.py",
"--test_trt_llm",
"--hf_model_dir",
llm_falcon_11b_model_root,
"--engine_dir",
engine_dir,
"--data_type",
data_type,
"--check_accuracy",
f"--num_beams={num_beams}",
f"--dataset_dir={llm_datasets_root}",
f"--rouge_dir={llm_rouge_root}",
]
if enable_block_reuse:
summary_cmd.extend(["--kv_cache_enable_block_reuse"])
if context_fmha_type == "enabled_with_fp32_acc":
summary_cmd.append("--enable_context_fmha_fp32_acc")
venv_check_call(llm_venv, summary_cmd)