mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
336 lines
12 KiB
Python
336 lines
12 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import csv
|
|
import os
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, quantize_data,
|
|
venv_check_call, venv_mpi_check_call)
|
|
from defs.conftest import (get_sm_version, llm_models_root, skip_post_blackwell,
|
|
skip_pre_ada)
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
# skip trt flow cases on post-Blackwell-Ultra
|
|
if get_sm_version() >= 103:
|
|
pytest.skip(
|
|
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
|
|
allow_module_level=True)
|
|
|
|
|
|
@skip_post_blackwell
|
|
@pytest.mark.parametrize("model_name", ['mixtral-8x7b-v0.1-AWQ'])
|
|
def test_llm_mixtral_int4_awq_1gpu_summary(llama_example_root,
|
|
llm_datasets_root, model_name,
|
|
llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir,
|
|
qcache_dir_without_install_package):
|
|
models_root = llm_models_root()
|
|
model_dir = os.path.join(models_root, model_name)
|
|
ckpt_dir = os.path.join(cmodel_dir, model_name)
|
|
|
|
print("Convert checkpoint...")
|
|
convert_cmd = [
|
|
f"{llama_example_root}/convert_checkpoint.py",
|
|
"--model_dir",
|
|
model_dir,
|
|
"--output_dir",
|
|
ckpt_dir,
|
|
]
|
|
venv_check_call(llm_venv, convert_cmd)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run inference")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=model_dir,
|
|
data_type="fp16",
|
|
tensorrt_llm_rouge1_threshold=19.5,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("test_type", ['build', 'infer'])
|
|
@pytest.mark.parametrize(
|
|
"moe_tp_size", [1, 4, 8],
|
|
ids=['expert_parallel', 'mixed_parallel', 'tensor_parallel'])
|
|
@pytest.mark.parametrize("moe_renorm_mode", [0, 1],
|
|
ids=['no_renormalize', 'renormalize'])
|
|
@pytest.mark.parametrize("mode", [0, 1], ids=['plugin', 'ootb_except_mha'])
|
|
@pytest.mark.parametrize("llm_mixtral_model_root",
|
|
['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_2nodes_8gpus(llama_example_root, llm_mixtral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, moe_tp_size,
|
|
moe_renorm_mode, mode, test_type):
|
|
"Run test on 2x8 gpus with moe_renorm_mode"
|
|
data_type = "float16"
|
|
tp_size, pp_size = 8, 2
|
|
world_size = tp_size * pp_size
|
|
model_name = os.path.basename(llm_mixtral_model_root)
|
|
engine_dir = os.path.join(llama_example_root, "engines", model_name,
|
|
data_type, f"{world_size}-gpu",
|
|
f"tp{tp_size}pp{pp_size}moe{moe_tp_size}",
|
|
f"renorm_{moe_renorm_mode}", f"mode_{mode}")
|
|
|
|
if test_type == "build":
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mixtral",
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=tp_size,
|
|
moe_tp_size=moe_tp_size,
|
|
moe_ep_size=tp_size // moe_tp_size,
|
|
pp_size=pp_size,
|
|
data_type=data_type,
|
|
moe_renorm_mode=moe_renorm_mode)
|
|
|
|
gemm_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
moe_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gemm_plugin={gemm_plugin}",
|
|
f"--moe_plugin={moe_plugin}",
|
|
f"--workers={8}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_beam_width=4",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
if test_type == "infer":
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=23,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(45000)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
|
|
indirect=True)
|
|
def test_llm_mixtral_moe_plugin_lora_4gpus(
|
|
llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_venv,
|
|
cmodel_dir,
|
|
engine_dir,
|
|
llm_lora_model_root,
|
|
):
|
|
"run Mixtral MoE lora test on 4 gpu."
|
|
print("Build engines...")
|
|
dtype = 'float16'
|
|
model_name = os.path.basename(llm_mixtral_model_root)
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
tp_size=4,
|
|
pp_size=1,
|
|
model_path=llm_mixtral_model_root,
|
|
data_type=dtype)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--lora_plugin=auto",
|
|
"--moe_plugin=auto",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
"--worker=4",
|
|
"--max_batch_size=8",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
ref_1 = [
|
|
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
|
|
29926, 28971, 29242, 28988
|
|
]
|
|
ref_2 = [
|
|
1, 315, 2016, 285, 4284, 526, 5680, 28723, 28705, 28740, 28723, 661
|
|
]
|
|
|
|
input_text = "我爱吃蛋糕"
|
|
print("Run inference with lora id 0...")
|
|
run_cmd = [
|
|
f"{llama_example_root}/../../../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=0",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_1 == predict
|
|
|
|
print("Run inference with lora id -1...")
|
|
input_text = "I love french quiche"
|
|
run_cmd = [
|
|
f"{llama_example_root}/../../../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=-1",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_2 == predict
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
|
|
indirect=True)
|
|
def test_llm_mixtral_moe_plugin_fp8_lora_4gpus(
|
|
llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_venv,
|
|
qcache_dir,
|
|
engine_dir,
|
|
llm_lora_model_root,
|
|
):
|
|
"run Mixtral MoE lora test on 4 gpu."
|
|
print("Build engines...")
|
|
dtype = 'float16'
|
|
tp_size = 4
|
|
pp_size = 1
|
|
workers = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
model_dir = quantize_data(llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mixtral_model_root,
|
|
dtype=dtype,
|
|
qformat="fp8",
|
|
kv_cache_dtype="fp8",
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--workers={workers}",
|
|
"--max_batch_size=8",
|
|
f"--output_dir={engine_dir}",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
f"--lora_plugin={dtype}",
|
|
f"--moe_plugin={dtype}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
ref_1 = [
|
|
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
|
|
29926, 28971, 29242, 28988
|
|
]
|
|
|
|
input_text = "我爱吃蛋糕"
|
|
print("Run inference with lora id 0...")
|
|
run_cmd = [
|
|
f"{llama_example_root}/../../../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=0",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv,
|
|
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_1 == predict
|
|
|
|
ref_2 = [
|
|
1, 315, 2016, 285, 4284, 526, 5680, 28723, 315, 2016, 272, 1439, 469,
|
|
28725
|
|
]
|
|
print("Run inference with lora id -1...")
|
|
input_text = "I love french quiche. I"
|
|
run_cmd = [
|
|
f"{llama_example_root}/../../../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=-1",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv,
|
|
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_2 == predict
|