TensorRT-LLMs/tests/unittest/llmapi/test_llm_args.py
QI JUN 34a6d2d28f
[TRTLLM-9302][chore] Move build config from BaseLlmArgs to TrtLlmArgs (#9249)
Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
2025-11-24 10:54:41 +08:00

768 lines
32 KiB
Python

import tempfile
import pydantic_core
import pytest
import yaml
import tensorrt_llm.bindings.executor as tle
from tensorrt_llm import LLM as TorchLLM
from tensorrt_llm._tensorrt_engine import LLM
from tensorrt_llm.builder import LoraConfig
from tensorrt_llm.llmapi import (BuildConfig, CapacitySchedulerPolicy,
SchedulerConfig)
from tensorrt_llm.llmapi.llm_args import *
from tensorrt_llm.llmapi.utils import print_traceback_on_error
from tensorrt_llm.plugin import PluginConfig
from .test_llm import llama_model_path
def test_LookaheadDecodingConfig():
# from constructor
config = LookaheadDecodingConfig(max_window_size=4,
max_ngram_size=3,
max_verification_set_size=4)
assert config.max_window_size == 4
assert config.max_ngram_size == 3
assert config.max_verification_set_size == 4
# from dict
config = LookaheadDecodingConfig.from_dict({
"max_window_size": 4,
"max_ngram_size": 3,
"max_verification_set_size": 4
})
assert config.max_window_size == 4
assert config.max_ngram_size == 3
assert config.max_verification_set_size == 4
# to pybind
pybind_config = config._to_pybind()
assert isinstance(pybind_config, tle.LookaheadDecodingConfig)
assert pybind_config.max_window_size == 4
assert pybind_config.max_ngram_size == 3
assert pybind_config.max_verification_set_size == 4
class TestYaml:
def _yaml_to_dict(self, yaml_content: str) -> dict:
with tempfile.NamedTemporaryFile(delete=False) as f:
f.write(yaml_content.encode('utf-8'))
f.flush()
f.seek(0)
dict_content = yaml.safe_load(f)
return dict_content
def test_update_llm_args_with_extra_dict_with_speculative_config(self):
yaml_content = """
speculative_config:
decoding_type: Lookahead
max_window_size: 4
max_ngram_size: 3
"""
dict_content = self._yaml_to_dict(yaml_content)
llm_args = TrtLlmArgs(model=llama_model_path)
llm_args_dict = update_llm_args_with_extra_dict(llm_args.model_dump(),
dict_content)
llm_args = TrtLlmArgs(**llm_args_dict)
assert llm_args.speculative_config.max_window_size == 4
assert llm_args.speculative_config.max_ngram_size == 3
assert llm_args.speculative_config.max_verification_set_size == 4
def test_llm_args_with_invalid_yaml(self):
yaml_content = """
pytorch_backend_config: # this is deprecated
max_num_tokens: 1
max_seq_len: 1
"""
dict_content = self._yaml_to_dict(yaml_content)
llm_args = TrtLlmArgs(model=llama_model_path)
llm_args_dict = update_llm_args_with_extra_dict(llm_args.model_dump(),
dict_content)
with pytest.raises(ValueError):
llm_args = TrtLlmArgs(**llm_args_dict)
def test_llm_args_with_build_config(self):
# build_config isn't a Pydantic
yaml_content = """
build_config:
max_beam_width: 4
max_batch_size: 8
max_num_tokens: 256
"""
dict_content = self._yaml_to_dict(yaml_content)
llm_args = TrtLlmArgs(model=llama_model_path)
llm_args_dict = update_llm_args_with_extra_dict(llm_args.model_dump(),
dict_content)
llm_args = TrtLlmArgs(**llm_args_dict)
assert llm_args.build_config.max_beam_width == 4
assert llm_args.build_config.max_batch_size == 8
assert llm_args.build_config.max_num_tokens == 256
def test_llm_args_with_kvcache_config(self):
yaml_content = """
kv_cache_config:
enable_block_reuse: True
max_tokens: 1024
max_attention_window: [1024, 1024, 1024]
"""
dict_content = self._yaml_to_dict(yaml_content)
llm_args = TrtLlmArgs(model=llama_model_path)
llm_args_dict = update_llm_args_with_extra_dict(llm_args.model_dump(),
dict_content)
llm_args = TrtLlmArgs(**llm_args_dict)
assert llm_args.kv_cache_config.enable_block_reuse == True
assert llm_args.kv_cache_config.max_tokens == 1024
assert llm_args.kv_cache_config.max_attention_window == [
1024, 1024, 1024
]
def test_llm_args_with_pydantic_options(self):
yaml_content = """
max_batch_size: 16
max_num_tokens: 256
max_seq_len: 128
"""
dict_content = self._yaml_to_dict(yaml_content)
llm_args = TrtLlmArgs(model=llama_model_path)
llm_args_dict = update_llm_args_with_extra_dict(llm_args.model_dump(),
dict_content)
llm_args = TrtLlmArgs(**llm_args_dict)
assert llm_args.max_batch_size == 16
assert llm_args.max_num_tokens == 256
assert llm_args.max_seq_len == 128
def check_defaults(py_config_cls, pybind_config_cls):
py_config = py_config_cls()
pybind_config = pybind_config_cls()
# get member variables from pybinding_config
for member in PybindMirror.get_pybind_variable_fields(pybind_config_cls):
py_value = getattr(py_config, member)
pybind_value = getattr(pybind_config, member)
assert py_value == pybind_value, f"{member} default value is not equal"
def test_KvCacheConfig_declaration():
config = KvCacheConfig(enable_block_reuse=True,
max_tokens=1024,
max_attention_window=[1024, 1024, 1024],
sink_token_length=32,
free_gpu_memory_fraction=0.5,
host_cache_size=1024,
onboard_blocks=True,
cross_kv_cache_fraction=0.5,
secondary_offload_min_priority=1,
event_buffer_max_size=0,
enable_partial_reuse=True,
copy_on_partial_reuse=True,
attention_dp_events_gather_period_ms=10)
pybind_config = config._to_pybind()
assert pybind_config.enable_block_reuse == True
assert pybind_config.max_tokens == 1024
assert pybind_config.max_attention_window == [1024, 1024, 1024]
assert pybind_config.sink_token_length == 32
assert pybind_config.free_gpu_memory_fraction == 0.5
assert pybind_config.host_cache_size == 1024
assert pybind_config.onboard_blocks == True
assert pybind_config.cross_kv_cache_fraction == 0.5
assert pybind_config.secondary_offload_min_priority == 1
assert pybind_config.event_buffer_max_size == 0
assert pybind_config.enable_partial_reuse == True
assert pybind_config.copy_on_partial_reuse == True
assert pybind_config.attention_dp_events_gather_period_ms == 10
def test_CapacitySchedulerPolicy():
val = CapacitySchedulerPolicy.MAX_UTILIZATION
assert PybindMirror.maybe_to_pybind(
val) == tle.CapacitySchedulerPolicy.MAX_UTILIZATION
def test_ContextChunkingPolicy():
val = ContextChunkingPolicy.EQUAL_PROGRESS
assert PybindMirror.maybe_to_pybind(
val) == tle.ContextChunkingPolicy.EQUAL_PROGRESS
def test_DynamicBatchConfig_declaration():
config = DynamicBatchConfig(enable_batch_size_tuning=True,
enable_max_num_tokens_tuning=True,
dynamic_batch_moving_average_window=10)
pybind_config = PybindMirror.maybe_to_pybind(config)
assert pybind_config.enable_batch_size_tuning == True
assert pybind_config.enable_max_num_tokens_tuning == True
assert pybind_config.dynamic_batch_moving_average_window == 10
def test_SchedulerConfig_declaration():
config = SchedulerConfig(
capacity_scheduler_policy=CapacitySchedulerPolicy.MAX_UTILIZATION,
context_chunking_policy=ContextChunkingPolicy.EQUAL_PROGRESS,
dynamic_batch_config=DynamicBatchConfig(
enable_batch_size_tuning=True,
enable_max_num_tokens_tuning=True,
dynamic_batch_moving_average_window=10))
pybind_config = PybindMirror.maybe_to_pybind(config)
assert pybind_config.capacity_scheduler_policy == tle.CapacitySchedulerPolicy.MAX_UTILIZATION
assert pybind_config.context_chunking_policy == tle.ContextChunkingPolicy.EQUAL_PROGRESS
assert PybindMirror.pybind_equals(pybind_config.dynamic_batch_config,
config.dynamic_batch_config._to_pybind())
def test_PeftCacheConfig_declaration():
config = PeftCacheConfig(num_host_module_layer=1,
num_device_module_layer=1,
optimal_adapter_size=64,
max_adapter_size=128,
num_put_workers=1,
num_ensure_workers=1,
num_copy_streams=1,
max_pages_per_block_host=24,
max_pages_per_block_device=8,
device_cache_percent=0.5,
host_cache_size=1024,
lora_prefetch_dir=".")
pybind_config = PybindMirror.maybe_to_pybind(config)
assert pybind_config.num_host_module_layer == 1
assert pybind_config.num_device_module_layer == 1
assert pybind_config.optimal_adapter_size == 64
assert pybind_config.max_adapter_size == 128
assert pybind_config.num_put_workers == 1
assert pybind_config.num_ensure_workers == 1
assert pybind_config.num_copy_streams == 1
assert pybind_config.max_pages_per_block_host == 24
assert pybind_config.max_pages_per_block_device == 8
assert pybind_config.device_cache_percent == 0.5
assert pybind_config.host_cache_size == 1024
assert pybind_config.lora_prefetch_dir == "."
def test_PeftCacheConfig_from_pybind():
pybind_config = tle.PeftCacheConfig(num_host_module_layer=1,
num_device_module_layer=1,
optimal_adapter_size=64,
max_adapter_size=128,
num_put_workers=1,
num_ensure_workers=1,
num_copy_streams=1,
max_pages_per_block_host=24,
max_pages_per_block_device=8,
device_cache_percent=0.5,
host_cache_size=1024,
lora_prefetch_dir=".")
config = PeftCacheConfig.from_pybind(pybind_config)
assert config.num_host_module_layer == 1
assert config.num_device_module_layer == 1
assert config.optimal_adapter_size == 64
assert config.max_adapter_size == 128
assert config.num_put_workers == 1
assert config.num_ensure_workers == 1
assert config.num_copy_streams == 1
assert config.max_pages_per_block_host == 24
assert config.max_pages_per_block_device == 8
assert config.device_cache_percent == 0.5
assert config.host_cache_size == 1024
assert config.lora_prefetch_dir == "."
def test_PeftCacheConfig_from_pybind_gets_python_only_default_values_when_none(
):
pybind_config = tle.PeftCacheConfig(num_host_module_layer=1,
num_device_module_layer=1,
optimal_adapter_size=64,
max_adapter_size=128,
num_put_workers=1,
num_ensure_workers=1,
num_copy_streams=1,
max_pages_per_block_host=24,
max_pages_per_block_device=8,
device_cache_percent=None,
host_cache_size=None,
lora_prefetch_dir=".")
config = PeftCacheConfig.from_pybind(pybind_config)
assert config.num_host_module_layer == 1
assert config.num_device_module_layer == 1
assert config.optimal_adapter_size == 64
assert config.max_adapter_size == 128
assert config.num_put_workers == 1
assert config.num_ensure_workers == 1
assert config.num_copy_streams == 1
assert config.max_pages_per_block_host == 24
assert config.max_pages_per_block_device == 8
assert config.device_cache_percent == PeftCacheConfig.model_fields[
"device_cache_percent"].default
assert config.host_cache_size == PeftCacheConfig.model_fields[
"host_cache_size"].default
assert config.lora_prefetch_dir == "."
def test_update_llm_args_with_extra_dict_with_nested_dict():
llm_api_args_dict = {
"model":
"dummy-model",
"build_config":
None, # Will override later.
"extended_runtime_perf_knob_config":
ExtendedRuntimePerfKnobConfig(multi_block_mode=True),
"kv_cache_config":
KvCacheConfig(enable_block_reuse=False),
"peft_cache_config":
PeftCacheConfig(num_host_module_layer=0),
"scheduler_config":
SchedulerConfig(capacity_scheduler_policy=CapacitySchedulerPolicy.
GUARANTEED_NO_EVICT)
}
plugin_config = PluginConfig(dtype='float16', nccl_plugin=None)
build_config = BuildConfig(max_input_len=1024,
lora_config=LoraConfig(lora_ckpt_source='hf'),
plugin_config=plugin_config)
extra_llm_args_dict = {
"build_config": build_config.model_dump(mode="json"),
}
llm_api_args_dict = update_llm_args_with_extra_dict(llm_api_args_dict,
extra_llm_args_dict,
"build_config")
initialized_llm_args = TrtLlmArgs(**llm_api_args_dict)
def check_nested_dict_equality(dict1, dict2, path=""):
if not isinstance(dict1, dict) or not isinstance(dict2, dict):
if dict1 != dict2:
raise ValueError(f"Mismatch at {path}: {dict1} != {dict2}")
return True
if dict1.keys() != dict2.keys():
raise ValueError(f"Different keys at {path}:")
for key in dict1:
new_path = f"{path}.{key}" if path else key
if not check_nested_dict_equality(dict1[key], dict2[key], new_path):
raise ValueError(f"Mismatch at {path}: {dict1} != {dict2}")
return True
build_config_dict1 = build_config.model_dump(mode="json")
build_config_dict2 = initialized_llm_args.build_config.model_dump(
mode="json")
check_nested_dict_equality(build_config_dict1, build_config_dict2)
class TestTorchLlmArgsCudaGraphSettings:
def test_cuda_graph_batch_sizes_case_0(self):
# set both cuda_graph_batch_sizes and cuda_graph_config.max_batch_size, and
# cuda_graph_batch_sizes is not equal to generated
with pytest.raises(ValueError):
TorchLlmArgs(
model=llama_model_path,
cuda_graph_config=CudaGraphConfig(batch_sizes=[1, 2, 3],
max_batch_size=128),
)
def test_cuda_graph_batch_sizes_case_0_1(self):
# set both cuda_graph_batch_sizes and cuda_graph_config.max_batch_size, and
# cuda_graph_batch_sizes is equal to generated
args = TorchLlmArgs(
model=llama_model_path,
cuda_graph_config=CudaGraphConfig(
batch_sizes=CudaGraphConfig._generate_cuda_graph_batch_sizes(
128, True),
enable_padding=True,
max_batch_size=128))
assert args.cuda_graph_config.batch_sizes == CudaGraphConfig._generate_cuda_graph_batch_sizes(
128, True)
assert args.cuda_graph_config.max_batch_size == 128
def test_cuda_graph_batch_sizes_case_1(self):
# set cuda_graph_batch_sizes only
args = TorchLlmArgs(model=llama_model_path,
cuda_graph_config=CudaGraphConfig(
batch_sizes=[1, 2, 4], enable_padding=True))
assert args.cuda_graph_config.batch_sizes == [1, 2, 4]
def test_cuda_graph_batch_sizes_case_2(self):
# set cuda_graph_config.max_batch_size only
args = TorchLlmArgs(model=llama_model_path,
cuda_graph_config=CudaGraphConfig(
max_batch_size=128, enable_padding=True))
assert args.cuda_graph_config.batch_sizes == CudaGraphConfig._generate_cuda_graph_batch_sizes(
128, True)
assert args.cuda_graph_config.max_batch_size == 128
class TestTrtLlmArgs:
def test_dynamic_setattr(self):
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
args = TrtLlmArgs(model=llama_model_path, invalid_arg=1)
with pytest.raises(ValueError):
args = TrtLlmArgs(model=llama_model_path)
args.invalid_arg = 1
class TestTorchLlmArgs:
@print_traceback_on_error
def test_runtime_sizes(self):
with TorchLLM(llama_model_path,
max_beam_width=1,
max_num_tokens=256,
max_seq_len=128,
max_batch_size=8) as llm:
assert llm.args.max_beam_width == 1
assert llm.args.max_num_tokens == 256
assert llm.args.max_seq_len == 128
assert llm.args.max_batch_size == 8
(
max_beam_width,
max_num_tokens,
max_seq_len,
max_batch_size,
) = llm.args.get_runtime_sizes()
assert max_beam_width == 1
assert max_num_tokens == 256
assert max_seq_len == 128
assert max_batch_size == 8
def test_dynamic_setattr(self):
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
args = TorchLlmArgs(model=llama_model_path, invalid_arg=1)
with pytest.raises(ValueError):
args = TorchLlmArgs(model=llama_model_path)
args.invalid_arg = 1
class TestTrtLlmArgs:
def test_build_config_default(self):
args = TrtLlmArgs(model=llama_model_path)
# It will create a default build_config
assert args.build_config
assert args.build_config.max_beam_width == 1
def test_build_config_change(self):
build_config = BuildConfig(
max_beam_width=4,
max_batch_size=8,
max_num_tokens=256,
)
args = TrtLlmArgs(model=llama_model_path, build_config=build_config)
assert args.build_config.max_beam_width == build_config.max_beam_width
assert args.build_config.max_batch_size == build_config.max_batch_size
assert args.build_config.max_num_tokens == build_config.max_num_tokens
def test_LLM_with_build_config(self):
build_config = BuildConfig(
max_beam_width=4,
max_batch_size=8,
max_num_tokens=256,
)
args = TrtLlmArgs(model=llama_model_path, build_config=build_config)
assert args.build_config.max_beam_width == build_config.max_beam_width
assert args.build_config.max_batch_size == build_config.max_batch_size
assert args.build_config.max_num_tokens == build_config.max_num_tokens
assert args.max_beam_width == build_config.max_beam_width
def test_to_dict_and_from_dict(self):
build_config = BuildConfig(
max_beam_width=4,
max_batch_size=8,
max_num_tokens=256,
)
args = TrtLlmArgs(model=llama_model_path, build_config=build_config)
args_dict = args.model_dump()
new_args = TrtLlmArgs.from_kwargs(**args_dict)
assert new_args.model_dump() == args_dict
def test_build_config_from_engine(self):
build_config = BuildConfig(max_batch_size=8, max_num_tokens=256)
tmp_dir = tempfile.mkdtemp()
with LLM(model=llama_model_path, build_config=build_config) as llm:
llm.save(tmp_dir)
args = TrtLlmArgs(
model=tmp_dir,
# runtime values
max_num_tokens=16,
max_batch_size=4,
)
assert args.build_config.max_batch_size == build_config.max_batch_size
assert args.build_config.max_num_tokens == build_config.max_num_tokens
assert args.max_num_tokens == 16
assert args.max_batch_size == 4
def test_model_dump_does_not_mutate_original(self):
"""Test that model_dump() and update_llm_args_with_extra_dict don't mutate the original."""
# Create args with specific build_config values
build_config = BuildConfig(
max_batch_size=8,
max_num_tokens=256,
)
args = TrtLlmArgs(model=llama_model_path, build_config=build_config)
# Store original values
original_max_batch_size = args.build_config.max_batch_size
original_max_num_tokens = args.build_config.max_num_tokens
# Convert to dict and pass through update_llm_args_with_extra_dict with overrides
args_dict = args.model_dump()
extra_dict = {
"max_batch_size": 128,
"max_num_tokens": 1024,
}
updated_dict = update_llm_args_with_extra_dict(args_dict, extra_dict)
# Verify original args was NOT mutated
assert args.build_config.max_batch_size == original_max_batch_size
assert args.build_config.max_num_tokens == original_max_num_tokens
# Verify updated dict has new values
new_args = TrtLlmArgs(**updated_dict)
assert new_args.build_config.max_batch_size == 128
assert new_args.build_config.max_num_tokens == 1024
class TestStrictBaseModelArbitraryArgs:
"""Test that StrictBaseModel prevents arbitrary arguments from being accepted."""
def test_cuda_graph_config_arbitrary_args(self):
"""Test that CudaGraphConfig rejects arbitrary arguments."""
# Valid arguments should work
config = CudaGraphConfig(batch_sizes=[1, 2, 4], max_batch_size=8)
assert config.batch_sizes == [1, 2, 4]
assert config.max_batch_size == 8
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
CudaGraphConfig(batch_sizes=[1, 2, 4], invalid_arg="should_fail")
assert "invalid_arg" in str(exc_info.value)
def test_moe_config_arbitrary_args(self):
"""Test that MoeConfig rejects arbitrary arguments."""
# Valid arguments should work
config = MoeConfig(backend="CUTLASS", max_num_tokens=1024)
assert config.backend == "CUTLASS"
assert config.max_num_tokens == 1024
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
MoeConfig(backend="CUTLASS", unknown_field="should_fail")
assert "unknown_field" in str(exc_info.value)
def test_calib_config_arbitrary_args(self):
"""Test that CalibConfig rejects arbitrary arguments."""
# Valid arguments should work
config = CalibConfig(device="cuda", calib_batches=512)
assert config.device == "cuda"
assert config.calib_batches == 512
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
CalibConfig(device="cuda", extra_field="should_fail")
assert "extra_field" in str(exc_info.value)
def test_decoding_base_config_arbitrary_args(self):
"""Test that DecodingBaseConfig rejects arbitrary arguments."""
# Valid arguments should work
config = DecodingBaseConfig(max_draft_len=10)
assert config.max_draft_len == 10
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
DecodingBaseConfig(max_draft_len=10, random_field="should_fail")
assert "random_field" in str(exc_info.value)
def test_dynamic_batch_config_arbitrary_args(self):
"""Test that DynamicBatchConfig rejects arbitrary arguments."""
# Valid arguments should work
config = DynamicBatchConfig(enable_batch_size_tuning=True,
enable_max_num_tokens_tuning=True,
dynamic_batch_moving_average_window=8)
assert config.enable_batch_size_tuning == True
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
DynamicBatchConfig(enable_batch_size_tuning=True,
enable_max_num_tokens_tuning=True,
dynamic_batch_moving_average_window=8,
fake_param="should_fail")
assert "fake_param" in str(exc_info.value)
def test_scheduler_config_arbitrary_args(self):
"""Test that SchedulerConfig rejects arbitrary arguments."""
# Valid arguments should work
config = SchedulerConfig(
capacity_scheduler_policy=CapacitySchedulerPolicy.MAX_UTILIZATION)
assert config.capacity_scheduler_policy == CapacitySchedulerPolicy.MAX_UTILIZATION
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
SchedulerConfig(capacity_scheduler_policy=CapacitySchedulerPolicy.
MAX_UTILIZATION,
invalid_option="should_fail")
assert "invalid_option" in str(exc_info.value)
def test_peft_cache_config_arbitrary_args(self):
"""Test that PeftCacheConfig rejects arbitrary arguments."""
# Valid arguments should work
config = PeftCacheConfig(num_host_module_layer=1,
num_device_module_layer=1)
assert config.num_host_module_layer == 1
assert config.num_device_module_layer == 1
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
PeftCacheConfig(num_host_module_layer=1,
unexpected_field="should_fail")
assert "unexpected_field" in str(exc_info.value)
def test_kv_cache_config_arbitrary_args(self):
"""Test that KvCacheConfig rejects arbitrary arguments."""
# Valid arguments should work
config = KvCacheConfig(enable_block_reuse=True, max_tokens=1024)
assert config.enable_block_reuse == True
assert config.max_tokens == 1024
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
KvCacheConfig(enable_block_reuse=True,
non_existent_field="should_fail")
assert "non_existent_field" in str(exc_info.value)
def test_extended_runtime_perf_knob_config_arbitrary_args(self):
"""Test that ExtendedRuntimePerfKnobConfig rejects arbitrary arguments."""
# Valid arguments should work
config = ExtendedRuntimePerfKnobConfig(multi_block_mode=True,
cuda_graph_mode=False)
assert config.multi_block_mode == True
assert config.cuda_graph_mode == False
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
ExtendedRuntimePerfKnobConfig(multi_block_mode=True,
bogus_setting="should_fail")
assert "bogus_setting" in str(exc_info.value)
def test_cache_transceiver_config_arbitrary_args(self):
"""Test that CacheTransceiverConfig rejects arbitrary arguments."""
# Valid arguments should work
config = CacheTransceiverConfig(backend="UCX",
max_tokens_in_buffer=1024)
assert config.backend == "UCX"
assert config.max_tokens_in_buffer == 1024
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
CacheTransceiverConfig(backend="UCX", invalid_config="should_fail")
assert "invalid_config" in str(exc_info.value)
def test_torch_compile_config_arbitrary_args(self):
"""Test that TorchCompileConfig rejects arbitrary arguments."""
# Valid arguments should work
config = TorchCompileConfig(enable_fullgraph=True,
enable_inductor=False)
assert config.enable_fullgraph == True
assert config.enable_inductor == False
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
TorchCompileConfig(enable_fullgraph=True,
invalid_flag="should_fail")
assert "invalid_flag" in str(exc_info.value)
def test_trt_llm_args_arbitrary_args(self):
"""Test that TrtLlmArgs rejects arbitrary arguments."""
# Valid arguments should work
args = TrtLlmArgs(model=llama_model_path, max_batch_size=8)
assert args.model == llama_model_path
assert args.max_batch_size == 8
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
TrtLlmArgs(model=llama_model_path, invalid_setting="should_fail")
assert "invalid_setting" in str(exc_info.value)
def test_torch_llm_args_arbitrary_args(self):
"""Test that TorchLlmArgs rejects arbitrary arguments."""
# Valid arguments should work
args = TorchLlmArgs(model=llama_model_path, max_batch_size=8)
assert args.model == llama_model_path
assert args.max_batch_size == 8
# Arbitrary arguments should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
TorchLlmArgs(model=llama_model_path,
unsupported_option="should_fail")
assert "unsupported_option" in str(exc_info.value)
def test_nested_config_arbitrary_args(self):
"""Test that nested configurations also reject arbitrary arguments."""
# Test with nested KvCacheConfig
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
KvCacheConfig(enable_block_reuse=True,
max_tokens=1024,
invalid_nested_field="should_fail")
assert "invalid_nested_field" in str(exc_info.value)
# Test with nested SchedulerConfig
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
SchedulerConfig(capacity_scheduler_policy=CapacitySchedulerPolicy.
MAX_UTILIZATION,
nested_invalid_field="should_fail")
assert "nested_invalid_field" in str(exc_info.value)
def test_strict_base_model_inheritance(self):
"""Test that StrictBaseModel properly forbids extra fields."""
# Verify that StrictBaseModel is properly configured
assert StrictBaseModel.model_config.get("extra") == "forbid"
# Test that a simple StrictBaseModel instance rejects arbitrary fields
class TestConfig(StrictBaseModel):
field1: str = "default"
field2: int = 42
# Valid configuration should work
config = TestConfig(field1="test", field2=100)
assert config.field1 == "test"
assert config.field2 == 100
# Arbitrary field should be rejected
with pytest.raises(
pydantic_core._pydantic_core.ValidationError) as exc_info:
TestConfig(field1="test", field2=100, extra_field="should_fail")
assert "extra_field" in str(exc_info.value)