TensorRT-LLMs/cpp/include/tensorrt_llm/batch_manager/trtGptModelOptionalParams.h
石晓伟 2a115dae84
Update TensorRT-LLM (#1793)
Co-authored-by: DreamGenX <x@dreamgen.com>
Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com>
Co-authored-by: bprus <39293131+bprus@users.noreply.github.com>
Co-authored-by: janpetrov <janpetrov@icloud.com>
2024-06-18 18:18:23 +08:00

96 lines
4.0 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/kvCacheConfig.h"
#include "tensorrt_llm/batch_manager/peftCacheManagerConfig.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/runtime/common.h"
#include <optional>
#include <utility>
#include <vector>
namespace tensorrt_llm::batch_manager
{
class TrtGptModelOptionalParams
{
using KvCacheConfig = kv_cache_manager::KvCacheConfig;
public:
using SizeType32 = tensorrt_llm::runtime::SizeType32;
explicit TrtGptModelOptionalParams(KvCacheConfig const& kvCacheConfig = KvCacheConfig{},
bool enableTrtOverlap = false, std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt,
bool normalizeLogProbs = true, bool enableChunkedContext = false,
PeftCacheManagerConfig const& peftCacheManagerConfig = PeftCacheManagerConfig{},
executor::DecodingConfig decodingConfig = executor::DecodingConfig{}, float gpuWeightsPercent = 1,
std::optional<SizeType32> maxBeamWidth = std::nullopt, std::optional<SizeType32> maxBatchSize = std::nullopt,
executor::SchedulerConfig const& schedulerConfig = executor::SchedulerConfig{})
: kvCacheConfig{kvCacheConfig}
, enableTrtOverlap{enableTrtOverlap}
, deviceIds(deviceIds)
, normalizeLogProbs{normalizeLogProbs}
, enableChunkedContext{enableChunkedContext}
, peftCacheManagerConfig(peftCacheManagerConfig)
, decodingConfig(std::move(decodingConfig))
, gpuWeightsPercent(gpuWeightsPercent)
, maxBeamWidth(maxBeamWidth)
, maxBatchSize(maxBatchSize)
, schedulerConfig{schedulerConfig}
{
}
explicit TrtGptModelOptionalParams(executor::ExecutorConfig const& executorConfig)
: TrtGptModelOptionalParams(KvCacheConfig(executorConfig.getKvCacheConfig()), false,
executorConfig.getParallelConfig().value_or(executor::ParallelConfig()).getDeviceIds(),
executorConfig.getNormalizeLogProbs(), executorConfig.getEnableChunkedContext(),
PeftCacheManagerConfig(executorConfig.getPeftCacheConfig().value_or(executor::PeftCacheConfig())),
executorConfig.getDecodingConfig().value_or(executor::DecodingConfig{}),
executorConfig.getGpuWeightsPercent(), executorConfig.getMaxBeamWidth(), executorConfig.getMaxBatchSize(),
executorConfig.getSchedulerConfig())
{
}
bool operator==(TrtGptModelOptionalParams const& other) const
{
return kvCacheConfig == other.kvCacheConfig && enableTrtOverlap == other.enableTrtOverlap
&& deviceIds == other.deviceIds && normalizeLogProbs == other.normalizeLogProbs
&& enableChunkedContext == other.enableChunkedContext && decodingConfig == other.decodingConfig;
}
friend std::ostream& operator<<(std::ostream& os, TrtGptModelOptionalParams const& self);
KvCacheConfig kvCacheConfig;
bool enableTrtOverlap;
std::optional<std::vector<SizeType32>> deviceIds;
bool normalizeLogProbs;
bool enableChunkedContext;
PeftCacheManagerConfig peftCacheManagerConfig;
executor::DecodingConfig decodingConfig;
// Percentage of weights on the gpu at runtime
float gpuWeightsPercent;
std::optional<SizeType32> maxBeamWidth;
std::optional<SizeType32> maxBatchSize;
executor::SchedulerConfig schedulerConfig;
};
} // namespace tensorrt_llm::batch_manager