mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
Co-authored-by: DreamGenX <x@dreamgen.com> Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com> Co-authored-by: bprus <39293131+bprus@users.noreply.github.com> Co-authored-by: janpetrov <janpetrov@icloud.com>
253 lines
9.6 KiB
Plaintext
253 lines
9.6 KiB
Plaintext
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/stopCriteriaKernels.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
namespace
|
|
{
|
|
__global__ void stopWordsCriterion(TokenIdType const** outputIds, SizeType32 const** parentIds,
|
|
TokenIdType const** stopWords, FinishedState* finished, SizeType32* sequenceLengths, SizeType32 const* batchSlots,
|
|
SizeType32 const* stopWordsLens, SizeType32* numNewTokens, SizeType32 batchSize, SizeType32 beamWidth,
|
|
SizeType32 maxSeqLen)
|
|
{
|
|
auto const id = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
|
|
auto const batchIdx = blockIdx.y / beamWidth;
|
|
auto const beamIdx = blockIdx.y % beamWidth;
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[batchIdx] : batchIdx;
|
|
auto const batchBeamIdx = batchSlot * beamWidth + beamIdx;
|
|
auto const newTokens = numNewTokens ? numNewTokens[batchSlot] : 1;
|
|
|
|
auto const* baseStopWords = stopWords[batchSlot];
|
|
auto const stopWordsLen = stopWordsLens[batchSlot];
|
|
auto const* baseOffsets = baseStopWords + stopWordsLen;
|
|
|
|
if (id >= stopWordsLen || baseOffsets[id] < 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto const itemEnd = baseOffsets[id];
|
|
auto const itemStart = (id > 0) ? baseOffsets[id - 1] : 0;
|
|
auto const itemSize = itemEnd - itemStart;
|
|
|
|
// The single-token case unconditionally bans the token
|
|
bool shouldStop = false;
|
|
SizeType32 stopLen = INT_MAX;
|
|
SizeType32 step = 0;
|
|
|
|
for (; step < newTokens; ++step)
|
|
{
|
|
// Need to minus newTokens because the sequenceLengths is already updated in this point
|
|
auto const currentStep = sequenceLengths[batchBeamIdx] - newTokens + step;
|
|
// Is sequence larger than stop word to look for a match?
|
|
if (currentStep + 1 >= itemSize)
|
|
{
|
|
shouldStop = true;
|
|
stopLen = currentStep + 1;
|
|
auto parentId = static_cast<SizeType32>(beamIdx);
|
|
bool const gatherBeam = beamWidth > 1;
|
|
|
|
// Start from the last token
|
|
for (auto tokenIdx = itemSize - 1; tokenIdx >= 0; tokenIdx--)
|
|
{
|
|
auto const previousToken
|
|
= outputIds[batchSlot][parentId * maxSeqLen + currentStep - (itemSize - 1) + tokenIdx];
|
|
// If token does not match already, stop comparison
|
|
if (previousToken != baseStopWords[itemStart + tokenIdx])
|
|
{
|
|
shouldStop = false;
|
|
break;
|
|
}
|
|
if (gatherBeam)
|
|
{
|
|
parentId = parentIds == nullptr
|
|
? SizeType32{0}
|
|
: parentIds[batchSlot][parentId * maxSeqLen + currentStep - (itemSize - 1) + tokenIdx];
|
|
|
|
if (parentId < 0 || parentId >= beamWidth)
|
|
{
|
|
shouldStop = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (shouldStop)
|
|
{
|
|
finished[batchSlot * beamWidth + beamIdx].setFinishedStopWords();
|
|
// When more than 1 token is predicted per step, find the first match with the stop word
|
|
if (newTokens > 1)
|
|
{
|
|
// Update num of new tokens up to stopped word (including).
|
|
atomicMin(numNewTokens + batchSlot, step + 1);
|
|
// Update seq lengths up to stopped word (including).
|
|
atomicMin(sequenceLengths + batchBeamIdx, stopLen);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeStopWordsCriterion(TokenIdType const** outputIds, SizeType32 const** parentIds,
|
|
TokenIdType const** stopWords, FinishedState* finished, SizeType32* sequenceLengths, SizeType32 const* batchSlots,
|
|
SizeType32 const* stopWordsLen, SizeType32* numNewTokens, SizeType32 maxStopWordsLen, SizeType32 batchSize,
|
|
SizeType32 beamWidth, SizeType32 maxSeqLen, cudaStream_t stream)
|
|
{
|
|
// Check if we have sampled a word from the stopWords list. If so, stop the sequence.
|
|
dim3 block, grid;
|
|
constexpr SizeType32 maxBlockSize{256};
|
|
|
|
block.x = min(((maxStopWordsLen + 32 - 1) / 32) * 32, maxBlockSize);
|
|
grid.x = (maxStopWordsLen + block.x - 1) / block.x;
|
|
grid.y = batchSize * beamWidth;
|
|
|
|
stopWordsCriterion<<<grid, block, 0, stream>>>(outputIds, parentIds, stopWords, finished, sequenceLengths,
|
|
batchSlots, stopWordsLen, numNewTokens, batchSize, beamWidth, maxSeqLen);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
__global__ void lengthCriterion(FinishedState* finished, SizeType32* finishedSum, SizeType32 const* sequenceLimitLength,
|
|
SizeType32* sequenceLengths, SizeType32* numNewTokens, SizeType32 const* batchSlots, SizeType32 batchSize,
|
|
SizeType32 beamWidth)
|
|
{
|
|
SizeType32 threadFinishedCount = 0;
|
|
auto const batchIdx = blockIdx.x;
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[batchIdx] : batchIdx;
|
|
|
|
for (auto beamIdx = static_cast<SizeType32>(threadIdx.x); beamIdx < beamWidth;
|
|
beamIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
auto const batchSlotBeamWidthIdx = batchSlot * beamWidth + beamIdx;
|
|
|
|
auto finishState = finished[batchSlotBeamWidthIdx];
|
|
|
|
auto const numTokensToLimit = sequenceLimitLength[batchSlot] - sequenceLengths[batchSlotBeamWidthIdx];
|
|
if (numTokensToLimit <= 0)
|
|
{
|
|
finishState.setFinishedMaxLength();
|
|
sequenceLengths[batchSlotBeamWidthIdx] = sequenceLimitLength[batchSlot];
|
|
if (numNewTokens)
|
|
{
|
|
numNewTokens[batchSlot] = numNewTokens[batchSlot] + numTokensToLimit;
|
|
}
|
|
}
|
|
threadFinishedCount += finishState.isFinished() ? 1 : 0;
|
|
finished[batchSlotBeamWidthIdx] = finishState;
|
|
}
|
|
|
|
if (finishedSum)
|
|
{
|
|
SizeType32 blockFinishedCount = 0;
|
|
if (blockDim.x <= 32)
|
|
{
|
|
blockFinishedCount = warpReduceSum(threadFinishedCount);
|
|
}
|
|
else
|
|
{
|
|
blockFinishedCount = blockReduceSum(threadFinishedCount);
|
|
}
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x == 0)
|
|
{
|
|
finishedSum[batchSlot] = blockFinishedCount;
|
|
}
|
|
}
|
|
}
|
|
|
|
void invokeLengthCriterion(FinishedState* finished, SizeType32* finishedSum, SizeType32 const* sequenceLimitLength,
|
|
SizeType32* sequenceLengths, SizeType32* numNewTokens, SizeType32 const* batchSlots, SizeType32 batchSize,
|
|
SizeType32 beamWidth, cudaStream_t stream)
|
|
{
|
|
// Check if we have attained the sequence length limit. If so, stop the
|
|
// sequence. In addition, check if all sequences are stopped and return the
|
|
// result in shouldStop
|
|
dim3 block{min(512, static_cast<uint32_t>(beamWidth))};
|
|
dim3 grid{static_cast<uint32_t>(batchSize)};
|
|
|
|
lengthCriterion<<<grid, block, 0, stream>>>(
|
|
finished, finishedSum, sequenceLimitLength, sequenceLengths, numNewTokens, batchSlots, batchSize, beamWidth);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
__global__ void explicitEOSCriterion(TokenIdType const** outputIds, TokenIdType const* endIds, FinishedState* finished,
|
|
SizeType32* sequenceLengths, SizeType32* numNewTokens, SizeType32 const* batchSlots, SizeType32 batchSize,
|
|
SizeType32 maxTokensPerStep)
|
|
{
|
|
auto const batchIdx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (batchIdx >= batchSize)
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[batchIdx] : batchIdx;
|
|
if (finished[batchSlot].isFinished())
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto const numTokens = numNewTokens != nullptr ? numNewTokens[batchSlot] : maxTokensPerStep;
|
|
auto const endId = endIds[batchSlot];
|
|
auto const sequenceLength = sequenceLengths[batchSlot];
|
|
|
|
auto const posStart = max(0, sequenceLength - numTokens);
|
|
auto const posEnd = sequenceLength;
|
|
for (SizeType32 pos = posStart; pos < posEnd; ++pos)
|
|
{
|
|
auto const token = outputIds[batchSlot][pos];
|
|
if (token == endId)
|
|
{
|
|
finished[batchSlot].setFinishedEOS();
|
|
sequenceLengths[batchSlot] = max(0, pos);
|
|
if (numNewTokens)
|
|
{
|
|
numNewTokens[batchSlot] = pos - posStart;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void invokeExplicitEOSCriterion(TokenIdType const** outputIds, TokenIdType const* endIds, FinishedState* finished,
|
|
SizeType32* sequenceLengths, SizeType32* numNewTokens, SizeType32 const* batchSlots, SizeType32 batchSize,
|
|
SizeType32 beamWidth, SizeType32 maxTokensPerStep, cudaStream_t stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(beamWidth == 1, "Explicit EOS criterion does not support beam search");
|
|
// Check if we have sampled an end id token. If so, stop the sequence.
|
|
SizeType32 constexpr blockSize{256};
|
|
|
|
dim3 grid;
|
|
grid.x = divUp(batchSize, blockSize);
|
|
|
|
explicitEOSCriterion<<<grid, blockSize, 0, stream>>>(
|
|
outputIds, endIds, finished, sequenceLengths, numNewTokens, batchSlots, batchSize, maxTokensPerStep);
|
|
sync_check_cuda_error();
|
|
}
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|