TensorRT-LLMs/cpp/tensorrt_llm/layers/decodingLayer.cpp
石晓伟 2a115dae84
Update TensorRT-LLM (#1793)
Co-authored-by: DreamGenX <x@dreamgen.com>
Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com>
Co-authored-by: bprus <39293131+bprus@users.noreply.github.com>
Co-authored-by: janpetrov <janpetrov@icloud.com>
2024-06-18 18:18:23 +08:00

258 lines
9.4 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/decodingLayer.h"
#include "tensorrt_llm/layers/beamSearchLayer.h"
#include "tensorrt_llm/layers/decodingParams.h"
#include "tensorrt_llm/layers/explicitDraftTokensLayer.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "tensorrt_llm/layers/medusaDecodingLayer.h"
#include "tensorrt_llm/layers/samplingLayer.h"
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace
{
template <typename T>
bool allSame(std::optional<std::vector<T>> const& vOpt)
{
if (!vOpt)
{
return true;
}
auto const& v = *vOpt;
if (v.size() <= 1)
{
return true;
}
auto first = v[0];
for (std::size_t i = 1; i < v.size(); ++i)
{
if (v[i] != first)
{
return false;
}
}
return true;
}
bool hasDiffRuntimeArgs(std::shared_ptr<tensorrt_llm::layers::DynamicDecodeSetupParams> const& params)
{
// return !allSame(params->penaltyParams.frequencyPenalty) || !allSame(params->penaltyParams.presencePenalty)
// || !allSame(params->penaltyParams.repetitionPenalty) || !allSame(params->penaltyParams.temperature)
// || !allSame(params->penaltyParams.minLength) || !allSame(params->banWordsInputs.noRepeatNgramSize);
return false;
}
} // namespace
namespace tensorrt_llm::layers
{
template <typename T>
DecodingLayer<T>::DecodingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mDecodingMode.isTopKorTopP())
{
mDecodingLayer = std::make_unique<SamplingLayer<T>>(mDecodingMode, decoderDomain, mStream, mAllocator);
}
else if (mDecodingMode.isBeamSearch())
{
mDecodingLayer = std::make_unique<BeamSearchLayer<T>>(decoderDomain, mStream, mAllocator);
}
else if (mDecodingMode.isMedusa())
{
mDecodingLayer = std::make_unique<MedusaDecodingLayer<T>>(decoderDomain, mStream, mAllocator);
}
else if (mDecodingMode.isLookahead())
{
// TODO(nkorobov) add lookahead layer
TLLM_LOG_WARNING("Lookahead decoding is not supported yet.");
}
else if (mDecodingMode.isExplicitDraftTokens())
{
mDecodingLayer = std::make_unique<ExplicitDraftTokensLayer<T>>(decoderDomain, mStream, mAllocator);
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<DynamicDecodeSetupParams>(baseSetupParams);
TLLM_CHECK_WITH_INFO(setupParams->decodingParams, "decodingParams for setup is not set");
if (mDecodingMode.isTopKorTopP())
{ // sampling layers
TLLM_CHECK_WITH_INFO(
beamWidth == 1, "Decoding mode is TopK and/or TopP, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams);
}
else if (mDecodingMode.isBeamSearch())
{ // beam search layer
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Decoding mode is beam search, but beamWidth <= 1 (%d <= 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, nullptr, setupParams->decodingParams);
}
else if (mDecodingMode.isMedusa())
{
TLLM_CHECK_WITH_INFO(beamWidth == 1, "Decoding mode is Medusa, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams);
}
else if (mDecodingMode.isLookahead())
{
TLLM_CHECK_WITH_INFO(beamWidth == 1, "Decoding mode is Lookahead, but beamWidth != 1 (%d != 1)", beamWidth);
// TODO(nkorobov) add lookahead layer
}
else if (mDecodingMode.isExplicitDraftTokens())
{
TLLM_CHECK_WITH_INFO(
beamWidth == 1, "Decoding mode is ExplicitDraftTokens, but beamWidth != 1 (%d != 1)", beamWidth);
mDecodingLayer->setup(batchSize, beamWidth, batchSlots, setupParams->decodingParams);
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::forwardAsync(
std::shared_ptr<BaseDecodingOutputs> const& baseOutputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto [outputParams, inputParams] = prepareParams(baseOutputs, baseInputs);
mDecodingLayer->forwardAsync(outputParams, inputParams);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void DecodingLayer<T>::forwardSync(
std::shared_ptr<BaseDecodingOutputs> const& baseOutputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto [outputParams, inputParams] = prepareParams(baseOutputs, baseInputs);
mDecodingLayer->forwardSync(outputParams, inputParams);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
std::tuple<std::shared_ptr<BaseDecodingOutputs>, std::shared_ptr<BaseDecodingInputs>> DecodingLayer<T>::prepareParams(
std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto params = std::dynamic_pointer_cast<DecodingInputs>(baseInputs);
auto const localDecoderDomain = getLocalDecoderDomain(params, mDecoderDomain);
auto const maxSeqLen = baseOutputs->outputIds.shape[baseOutputs->outputIds.shape.size() - 1];
auto const& endIds = params->endIds;
std::shared_ptr<BaseDecodingOutputs> preparedOutputs;
std::shared_ptr<BaseDecodingInputs> preparedInputs;
if (mDecodingMode.isBeamSearch())
{
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isTopKorTopP())
{
auto const ite = params->ite;
auto const step = params->step;
auto const localBatchSize = static_cast<std::size_t>(params->localBatchSize);
TLLM_CHECK_WITH_INFO(localDecoderDomain.getBeamWidth() == 1,
"Decoding mode is TopK and/or TopP, but beamWidth != 1 (%d != 1)", localDecoderDomain.getBeamWidth());
// In sampling, we have supported batch sampling. So, we always compute all
// sentences once.
Tensor const logitsSlice{params->logits->slice(
{localBatchSize, static_cast<size_t>(localDecoderDomain.getBeamWidth()), params->logits->shape[2]}, 0)};
Tensor const endIdSlice{endIds.slice({localBatchSize}, 0)};
auto decodeInputs = std::make_shared<SamplingInputs>(endIdSlice, step, ite, localBatchSize);
decodeInputs->finished = params->finished;
decodeInputs->logits = logitsSlice;
if (params->inputLengths)
{
auto& inputLengths = params->inputLengths.value();
decodeInputs->inputLengths
= inputLengths.slice({localBatchSize, static_cast<size_t>(localDecoderDomain.getBeamWidth())}, 0);
}
decodeInputs->batchSlots = params->batchSlots;
preparedInputs = decodeInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isMedusa())
{
TLLM_CHECK_WITH_INFO(localDecoderDomain.getBeamWidth() == 1,
"Decoding mode is Medusa, but beamWidth != 1 (%d != 1)", localDecoderDomain.getBeamWidth());
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else if (mDecodingMode.isLookahead())
{
// TODO(nkorobov) add lookahead layer
}
else if (mDecodingMode.isExplicitDraftTokens())
{
// TODO(nkorobov) add explicit draft tokens layer param prep
// Simply forward params for now
preparedInputs = baseInputs;
preparedOutputs = baseOutputs;
}
else
{
TLLM_CHECK_WITH_INFO(false,
"Decoding mode is none of the supported {TopK, TopP, TopKTopP, BeamSearch, Medusa, Lookahead, "
"ExplicitDraftTokens}");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return {preparedOutputs, preparedInputs};
}
template class DecodingLayer<float>;
template class DecodingLayer<half>;
} // namespace tensorrt_llm::layers