TensorRT-LLMs/examples/multimodal/build_visual_engine.py
石晓伟 2a115dae84
Update TensorRT-LLM (#1793)
Co-authored-by: DreamGenX <x@dreamgen.com>
Co-authored-by: Ace-RR <78812427+Ace-RR@users.noreply.github.com>
Co-authored-by: bprus <39293131+bprus@users.noreply.github.com>
Co-authored-by: janpetrov <janpetrov@icloud.com>
2024-06-18 18:18:23 +08:00

753 lines
29 KiB
Python

import argparse
import os
import shutil
import sys
import tarfile
from time import time
import yaml
# isort: off
import torch
import tensorrt as trt
from tensorrt_llm.builder import Builder
# isort: on
import json
import math
import torch.nn.functional as F
from PIL import Image
from safetensors.torch import save_file
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoModelForVision2Seq, AutoProcessor,
Blip2ForConditionalGeneration, Blip2Processor,
FuyuForCausalLM, FuyuProcessor,
LlavaForConditionalGeneration, NougatProcessor,
Pix2StructForConditionalGeneration,
VisionEncoderDecoderModel)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type',
type=str,
default=None,
choices=[
'opt-2.7b', 'opt-6.7b', 'flan-t5-xl', 'flan-t5-xxl',
'llava', 'vila', 'nougat', 'cogvlm', 'fuyu',
'pix2struct', 'neva', 'kosmos-2', 'video-neva',
'phi-3-vision'
],
help="Model type")
parser.add_argument(
'--model_path',
type=str,
default=None,
help=
"Huggingface repo, local directory with weights or path to checkpoint file"
)
parser.add_argument('--vila_path',
type=str,
default=None,
help="Path to VILA source code directory")
parser.add_argument('--output_dir',
type=str,
default=None,
help="Directory where visual TRT engines are saved")
parser.add_argument('--max_batch_size',
type=int,
default=4,
help="Maximum batch size for input images")
return parser.parse_args()
class VisionEngineBuilder:
def __init__(self, args):
args.device = torch.device(
"cuda") if torch.cuda.is_available() else "cpu"
if args.output_dir is None:
args.output_dir = 'visual_engines/%s' % (
args.model_path.split('/')[-1] if args.vila_path is not None
else args.model_path.split('/')[-1])
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
self.args = args
def build(self):
args = self.args
if 'opt' in args.model_type or 't5' in args.model_type:
build_blip2_engine(args)
elif args.model_type == 'pix2struct':
build_pix2struct_engine(args)
elif args.model_type == 'llava':
build_llava_engine(args)
elif args.model_type == 'vila':
assert args.vila_path is not None, "Please clone and provide VILA source code path"
build_vila_engine(args)
elif args.model_type == 'nougat':
build_nougat_engine(args)
elif args.model_type == 'cogvlm':
build_cogvlm_engine(args)
elif args.model_type == 'fuyu':
build_fuyu_engine(args)
elif args.model_type == 'neva':
build_neva_engine(args)
elif args.model_type == 'video-neva':
build_video_neva_engine(args)
elif args.model_type == 'kosmos-2':
build_kosmos_engine(args)
elif args.model_type == 'phi-3-vision':
build_phi_engine(args)
else:
raise RuntimeError(f"Invalid model type {args.model_type}")
def export_visual_wrapper_onnx(visual_wrapper,
input,
output_dir,
input_names=['input'],
dynamic_axes={'input': {
0: 'batch'
}}):
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(visual_wrapper,
input,
f'{output_dir}/onnx/visual_encoder.onnx',
opset_version=17,
input_names=input_names,
output_names=['output'],
dynamic_axes=dynamic_axes)
def build_trt_engine(model_type,
input_sizes,
output_dir,
max_batch_size,
dtype=torch.float16,
num_frames=None):
part_name = 'visual_encoder'
onnx_file = '%s/onnx/%s.onnx' % (output_dir, part_name)
engine_file = '%s/%s.engine' % (output_dir, part_name)
config_file = '%s/%s' % (output_dir, "config.json")
logger.log(trt.Logger.INFO, "Building TRT engine for %s" % part_name)
builder = trt.Builder(logger)
network = builder.create_network(
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config_args = {
"precision": str(dtype).split('.')[-1],
"model_type": model_type
}
if num_frames is not None:
config_args["num_frames"] = num_frames
config_wrapper = Builder().create_builder_config(**config_args)
config = config_wrapper.trt_builder_config
parser = trt.OnnxParser(network, logger)
with open(onnx_file, 'rb') as model:
if not parser.parse(model.read(), os.path.abspath(onnx_file)):
logger.log(trt.Logger.ERROR, "Failed parsing %s" % onnx_file)
for error in range(parser.num_errors):
logger.log(trt.Logger.ERROR, parser.get_error(error))
logger.log(trt.Logger.INFO, "Succeeded parsing %s" % onnx_file)
# Delete onnx files since we don't need them now
shutil.rmtree(f'{output_dir}/onnx')
nBS = -1
nMinBS = 1
nOptBS = max(nMinBS, int(max_batch_size / 2))
nMaxBS = max_batch_size
inputT = network.get_input(0)
# input sizes can be a list of ints (e.g., [3, H, W]) when inputs are images,
# or a list of three int lists (e.g., [[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]]).
assert isinstance(input_sizes, list), "input_sizes must be a list"
if isinstance(input_sizes[0], int):
logger.log(trt.Logger.INFO, f"Processed input sizes {input_sizes}")
inputT.shape = [nBS, *input_sizes]
min_size = opt_size = max_size = input_sizes
elif len(input_sizes) == 3 and isinstance(input_sizes[0], list):
min_size, opt_size, max_size = input_sizes
logger.log(
trt.Logger.INFO,
f"Processed min/opt/max input sizes {min_size}/{opt_size}/{max_size}"
)
else:
raise ValueError(f"invalid input sizes: {input_sizes}")
profile.set_shape(inputT.name, [nMinBS, *min_size], [nOptBS, *opt_size],
[nMaxBS, *max_size])
if model_type == "pix2struct":
inputT = network.get_input(1)
P = input_sizes[0] # Number of patches
inputT.shape = [nBS, P]
profile.set_shape(inputT.name, [nMinBS, P], [nOptBS, P], [nMaxBS, P])
config.add_optimization_profile(profile)
t0 = time()
engine_string = builder.build_serialized_network(network, config)
t1 = time()
if engine_string is None:
raise RuntimeError("Failed building %s" % (engine_file))
else:
logger.log(trt.Logger.INFO,
"Succeeded building %s in %d s" % (engine_file, t1 - t0))
with open(engine_file, 'wb') as f:
f.write(engine_string)
Builder.save_config(config_wrapper, config_file)
def build_blip2_engine(args):
model_type = 'Salesforce/blip2-' + args.model_type
processor = Blip2Processor.from_pretrained(model_type)
raw_image = Image.new('RGB', [10, 10]) # dummy image
prompt = "Question: what is this? Answer:"
inputs = processor(raw_image, prompt,
return_tensors="pt").to(args.device, torch.float16)
image = inputs['pixel_values']
class Blip2VisionWrapper(torch.nn.Module):
def __init__(self, vision_model, qformer, projector, query_tokens):
super().__init__()
self.vision_model = vision_model
self.qformer = qformer
self.projector = projector
self.query_tokens = query_tokens
def forward(self, image):
features = self.vision_model(image)[0]
qformer_output = self.qformer(query_embeds=self.query_tokens,
encoder_hidden_states=features,
return_dict=True)
return self.projector(qformer_output.last_hidden_state)
model = Blip2ForConditionalGeneration.from_pretrained(
model_type, torch_dtype=torch.float16)
wrapper = Blip2VisionWrapper(model.vision_model, model.qformer,
model.language_projection, model.query_tokens)
wrapper.to(args.device)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size)
def build_pix2struct_engine(args):
processor = AutoProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
dtype = torch.float16
inputs = processor(text="dummy", images=raw_image, return_tensors="pt")
image = inputs['flattened_patches'].to(args.device, dtype)
attention_mask = inputs['attention_mask'].to(args.device, torch.int)
class pix2structVisionWrapper(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, image, attention_mask):
vision_x = self.encoder.embeddings(image)
img_features = self.encoder.encoder(vision_x,
attention_mask=attention_mask)
img_features = self.encoder.layernorm(img_features[0])
return img_features
model = Pix2StructForConditionalGeneration.from_pretrained(
args.model_path, torch_dtype=dtype)
wrapper = pix2structVisionWrapper(model.encoder.to(args.device))
# input shape: batch size, number of patches, hidden dimension
# attention mask shape: batch size, number of patches
# The number of image patches can vary depending on the image size, but it typically
# falls within a relatively narrow range. To improve performance, we can avoid using
# dynamic axis for the input patches and instead use a fixed number of patches along
# with an attention mask.
export_visual_wrapper_onnx(wrapper, (image, attention_mask),
args.output_dir,
input_names=['input', 'attention_mask'],
dynamic_axes={
'input': {
0: 'batch'
},
'attention_mask': {
0: 'batch'
}
})
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2]], # Number of Patches, Hidden Dimension
args.output_dir,
args.max_batch_size,
torch.bfloat16)
def build_llava_engine(args):
processor = AutoProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(text="dummy", images=raw_image,
return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class LlavaVisionWrapper(torch.nn.Module):
def __init__(self, tower, projector, feature_layer):
super().__init__()
self.tower = tower
self.projector = projector
self.feature_layer = feature_layer
def forward(self, image):
all_hidden_states = self.tower(
image, output_hidden_states=True).hidden_states
features = all_hidden_states[self.feature_layer][:, 1:]
return self.projector(features)
model = LlavaForConditionalGeneration.from_pretrained(
args.model_path, torch_dtype=torch.float16)
wrapper = LlavaVisionWrapper(model.vision_tower.to(args.device),
model.multi_modal_projector.to(args.device),
model.config.vision_feature_layer)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size)
def build_vila_engine(args):
# Note: VILA model is not in public HF model zoo yet. We need to explicitly import from the git repo
sys.path.append(args.vila_path)
from llava.model import LlavaLlamaConfig, LlavaLlamaModel # noqa
from transformers import AutoModel
model = AutoModel.from_pretrained(
args.model_path,
device_map='auto',
)
vision_tower = model.get_vision_tower()
image_processor = vision_tower.image_processor
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = image_processor(images=raw_image,
return_tensors="pt")['pixel_values']
if isinstance(image, list):
image = image[0].unsqueeze(0)
image = image.to(args.device, torch.float16)
class VilaVisionWrapper(torch.nn.Module):
def __init__(self, tower, projector):
super().__init__()
self.tower = tower
self.projector = projector
def forward(self, image):
features = self.tower(image)
return self.projector(features)
model = AutoModel.from_pretrained(
args.model_path,
device_map='auto',
)
wrapper = VilaVisionWrapper(model.get_vision_tower().to(args.device),
model.mm_projector.to(args.device))
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size)
def build_nougat_engine(args):
processor = NougatProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(raw_image, return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class SwinEncoderWrapper(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, image):
return self.encoder(image).last_hidden_state
model = VisionEncoderDecoderModel.from_pretrained(args.model_path,
torch_dtype=torch.float16)
swin_encoder = model.get_encoder().to(args.device)
wrapper = SwinEncoderWrapper(swin_encoder)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size)
def build_cogvlm_engine(args):
hf_config = AutoConfig.from_pretrained(args.model_path,
trust_remote_code=True)
image_size = hf_config.vision_config['image_size']
dtype = hf_config.torch_dtype
image = torch.empty(1,
3,
image_size,
image_size,
dtype=dtype,
device=args.device) # dummy image
class CogVlmVisionWrapper(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, image):
return self.encoder(image)
cogvlm = AutoModelForCausalLM.from_pretrained(args.model_path,
torch_dtype=dtype,
trust_remote_code=True)
vit_encoder = cogvlm.model.vision.to(args.device).eval()
wrapper = CogVlmVisionWrapper(vit_encoder)
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size,
dtype)
def build_fuyu_engine(args):
processor = FuyuProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10])
image = processor(text="dummy", images=raw_image,
return_tensors="pt")['image_patches'][0].to(
args.device, torch.float16).unsqueeze(0)
class FuyuEncoderWrapper(torch.nn.Module):
def __init__(self, linear):
super().__init__()
self.linear = linear.to(torch.float16)
def forward(self, patches):
return self.linear(patches).flatten(0, 1)
model = FuyuForCausalLM.from_pretrained(args.model_path,
torch_dtype=torch.float16)
vision_encoder = model.vision_embed_tokens
wrapper = FuyuEncoderWrapper(vision_encoder).to(args.device)
export_visual_wrapper_onnx(wrapper,
image,
args.output_dir,
dynamic_axes={'input': {
0: 'batch',
2: 'patch'
}})
build_trt_engine(
args.model_type,
# [nImgs, nImgPatches, nDims]
# nImgs is always one since each query has exactly one image
# nImgPatches depends on image size (patch size: 30x30)
# nDims is 30x30x3=2700 (patch size x color channels)
[[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]],
args.output_dir,
args.max_batch_size)
def build_neva_engine(args):
# extract NeMo checkpoint
with tarfile.open(args.model_path) as tar:
nemo_config = yaml.safe_load(tar.extractfile("./model_config.yaml"))
try:
# trained without TP
mp0_weights = torch.load(tar.extractfile("./model_weights.ckpt"),
map_location=args.device)
except KeyError:
# trained with TP
mp0_weights = torch.load(
tar.extractfile("./mp_rank_00/model_weights.ckpt"),
map_location=args.device)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class VisionEncoderWrapper(torch.nn.Module):
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
vision_x = self.encoder(pixel_values=images,
output_hidden_states=True)
vision_x = vision_x.hidden_states[-2]
vision_x = vision_x[:, 1:]
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
assert nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp2x_gelu"
vision_connector = torch.nn.Sequential(
torch.nn.Linear(vision_config["hidden_size"],
nemo_config["hidden_size"],
bias=True), torch.nn.GELU(),
torch.nn.Linear(nemo_config["hidden_size"],
nemo_config["hidden_size"],
bias=True)).to(dtype=dtype)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
for layer in range(0, 3, 2):
vision_connector[layer].load_state_dict({
'weight':
mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
'bias':
mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
})
# export the whole wrapper
wrapper = VisionEncoderWrapper(vision_encoder,
vision_connector).to(args.device, dtype)
image_size = hf_config.vision_config.image_size
dummy_image = torch.empty(
1, 3, image_size, image_size, dtype=dtype,
device=args.device) # dummy image shape [B, C, H, W]
export_visual_wrapper_onnx(wrapper, dummy_image, args.output_dir)
build_trt_engine(
args.model_type,
[3, image_size, image_size], # [3, H, W]
args.output_dir,
args.max_batch_size,
dtype)
def build_video_neva_engine(args):
# extract NeMo checkpoint
with tarfile.open(args.model_path) as tar:
nemo_config = yaml.safe_load(tar.extractfile("./model_config.yaml"))
try:
# trained without TP
mp0_weights = torch.load(tar.extractfile("./model_weights.ckpt"),
map_location=args.device)
except KeyError:
# trained with TP
mp0_weights = torch.load(
tar.extractfile("./mp_rank_00/model_weights.ckpt"),
map_location=args.device)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class VisionEncoderWrapper(torch.nn.Module):
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
b, num_frames, c, h, w = images.shape
images = images.view(b * num_frames, c, h, w)
vision_x = self.encoder(
pixel_values=images, #[(B num_frames), C, H, W]
output_hidden_states=True)
vision_x = vision_x.hidden_states[-2]
vision_x = vision_x[:, 1:]
# reshape back to [B, num_frames, img_size, hidden_size]
vision_x = vision_x.view(b, num_frames, -1, vision_x.shape[-1])
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
assert nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "linear"
vision_connector = torch.nn.Linear(vision_config["hidden_size"],
nemo_config["hidden_size"],
bias=True)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
vision_connector.load_state_dict({
'weight':
mp0_weights[f"{key_prefix}.weight"].to(dtype),
'bias':
mp0_weights[f"{key_prefix}.bias"].to(dtype),
})
# export the whole wrapper
wrapper = VisionEncoderWrapper(vision_encoder,
vision_connector).to(args.device, dtype)
image_size = hf_config.vision_config.image_size
num_frames = nemo_config['data']['num_frames']
dummy_video = torch.empty(1,
num_frames,
3,
image_size,
image_size,
dtype=dtype,
device=args.device) # dummy image
export_visual_wrapper_onnx(wrapper, dummy_video, args.output_dir)
build_trt_engine(
args.model_type,
[num_frames, 3, image_size, image_size], # [num_frames, 3, H, W]
args.output_dir,
args.max_batch_size,
dtype,
num_frames=num_frames)
def build_kosmos_engine(args):
processor = AutoProcessor.from_pretrained(args.model_path)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(text="dummy", images=raw_image,
return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
class VisionEncoderWrapper(torch.nn.Module):
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
vision_x = self.encoder(images, output_hidden_states=True)
img_features = self.encoder.model.post_layernorm(
vision_x.last_hidden_state)
img_features = F.normalize(img_features, dim=-1)
img_features, _ = self.connector(img_features)
return img_features
model = AutoModelForVision2Seq.from_pretrained(args.model_path,
torch_dtype=torch.float16)
wrapper = VisionEncoderWrapper(
model.vision_model.to(args.device),
model.image_to_text_projection.to(args.device))
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], # [3, H, W]
args.output_dir,
args.max_batch_size)
def build_phi_engine(args):
processor = AutoProcessor.from_pretrained(args.model_path,
trust_remote_code=True)
raw_image = Image.new('RGB', [10, 10]) # dummy image
image = processor(text="<|image_1|>\ndummy",
images=raw_image,
return_tensors="pt")['pixel_values'].to(
args.device, torch.float16)
try:
with open(f"{args.model_path}/preprocessor_config.json", "r") as file:
config = file.read()
config_dict = json.loads(config)
num_crops = config_dict.get("num_crops")
except:
num_crops = 16
class Phi3VisionWrapper(torch.nn.Module):
def __init__(self, img_processor, img_projection, layer_idx,
image_dim_out):
super().__init__()
self.img_processor = img_processor
self.img_projection = img_projection
self.layer_idx = layer_idx
self.image_dim_out = image_dim_out
def get_img_features(
self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
img_processor_output = self.img_processor(img_embeds,
output_hidden_states=True)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
patch_feature = img_feature[:, 1:]
return patch_feature
def forward(self, image):
img_features = self.get_img_features(image)
base_feat_height = int(math.sqrt(img_features.shape[1]))
C = self.image_dim_out
H = base_feat_height
img_features = img_features.reshape(-1, H, H, C).reshape(
-1, H // 2, 2, H // 2, 2,
C).contiguous().permute(0, 1, 3, 2, 4,
5).reshape(-1, H // 2, H // 2,
4 * C).contiguous()
return self.apply_img_projection(img_features)
def apply_img_projection(self, input):
return self.img_projection(input)
model = AutoModelForCausalLM.from_pretrained(args.model_path,
torch_dtype=torch.float16,
trust_remote_code=True).to(
args.device)
wrapper = Phi3VisionWrapper(model.model.vision_embed_tokens.img_processor,
model.model.vision_embed_tokens.img_projection,
model.model.vision_embed_tokens.layer_idx,
model.model.vision_embed_tokens.image_dim_out)
image = image.flatten(0, 1)
glb_GN = wrapper.apply_img_projection(
model.model.vision_embed_tokens.glb_GN)
sub_GN = wrapper.apply_img_projection(
model.model.vision_embed_tokens.sub_GN)
tensors = {"glb_GN": glb_GN, "sub_GN": sub_GN}
save_file(tensors, args.output_dir + "/image_newlines.safetensors")
export_visual_wrapper_onnx(wrapper, image, args.output_dir)
build_trt_engine(
args.model_type,
[image.shape[1], image.shape[2], image.shape[3]], args.output_dir,
args.max_batch_size * (num_crops + 1)) #TODO: Take input from config
if __name__ == '__main__':
logger = trt.Logger(trt.Logger.INFO)
args = parse_arguments()
builder = VisionEngineBuilder(args)
builder.build()