TensorRT-LLMs/tensorrt_llm/models/phi3/phi3small/convert.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

324 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from tensorrt_llm.quantization import QuantAlgo
from ...._utils import str_dtype_to_torch
def shuffle_qkv_weights(weights, config):
# Input weights are organized as
# (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)
# where n = num_kv_heads, m = num_attention_heads // num_kv_heads (i.e. #q_heads per kv_head)
#
# Output weights will be organized as
# (q00, q01, ..., qnm), (k0, k1, .., kn), (v0, v1, .., vn)
num_heads = config['num_attention_heads']
num_kv_heads = config['num_kv_heads'] if 'num_kv_heads' in config.keys(
) else config['num_key_value_heads']
num_q_per_kv = num_heads // num_kv_heads
hidden_size = config['hidden_size']
head_dim = hidden_size // num_heads
input_shape = weights.shape
if weights.dim() < 2:
weights = weights.unsqueeze(1)
weights = weights.reshape(num_kv_heads, (num_q_per_kv + 2), head_dim,
weights.shape[-1])
q = weights[:, :-2, :, :]
k = weights[:, -2, :, :]
v = weights[:, -1, :, :]
# num_heads x head_dim x hidden_size
q = q.reshape(-1, q.shape[2], q.shape[3])
# num_heads + (2 * num_kv_heads) x head_dim x hidden_size
weights = torch.cat([q, k, v], dim=0)
weights = weights.reshape(-1, weights.shape[2])
weights = weights.squeeze()
assert input_shape == weights.shape
return weights
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return torch.chunk(v, tp_size)[idx].contiguous()
else:
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
v = v.reshape(3, n_hidden, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
return split_v.contiguous()
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV bias according to tensor parallelism
"""
v = v.reshape(3, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
return split_v.contiguous()
def split_matrix_tp(v, tensor_parallel, rank, dim):
return split(v, tensor_parallel, rank, dim=dim)
def split_embedding(
param: torch.Tensor,
tp_size: int,
tp_rank: int,
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
) -> torch.Tensor:
if param is None:
return None
if not use_parallel_embedding:
return param
vocab_size, hidden_size = param.size()
if sharding_dim == 0:
if vocab_size % tp_size != 0:
vocab_size_padded = pad_vocab_size(vocab_size, tp_size)
pad_width = vocab_size_padded - vocab_size
param = torch.nn.functional.pad(param, (0, 0, 0, pad_width),
value=0)
else:
assert hidden_size % tp_size == 0
return split(param, tp_size, tp_rank, dim=sharding_dim)
def get_weight(config, prefix, dtype):
return config[prefix + '.weight'].to(dtype).detach()
def get_bias(config, prefix, dtype):
return config[prefix + '.bias'].to(dtype).detach()
def get_weight_and_bias(config, prefix, dtype):
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
def get_tllm_linear_weight(weight,
prefix,
bias=None,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8):
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[prefix + '.weight'] = processed_torch_weights
results[prefix + '.per_channel_scale'] = torch_weight_scales
else:
results[prefix + '.weight'] = weight.contiguous()
if bias is not None:
results[prefix + '.bias'] = bias
return results
def split_weights_tp(config, weights, args, rank, dtype):
num_heads = config['num_attention_heads']
num_kv_heads = config['num_kv_heads']
hidden_size = config['hidden_size']
mha_mode = num_heads == num_kv_heads
tp_size = args.tp_size
use_weight_only = args.use_weight_only
plugin_weight_only_quant_type = None
if use_weight_only and args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
elif use_weight_only and args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
# Helper
def get_weight(weight, prefix, bias):
return get_tllm_linear_weight(weight, prefix, bias, use_weight_only,
plugin_weight_only_quant_type)
for layer_id in range(config['num_hidden_layers']):
layer_prefix = f"transformer.layers.{layer_id}."
prefix = layer_prefix + 'attention.qkv'
qkv_weight, qkv_bias = get_weight_and_bias(weights, prefix, dtype)
if not mha_mode:
num_q_per_kv = num_heads // num_kv_heads
qkv_weight = qkv_weight.reshape(num_q_per_kv + 2, -1, hidden_size)
q = qkv_weight[:num_q_per_kv, :, :].reshape(-1, hidden_size)
k = qkv_weight[num_q_per_kv:num_q_per_kv + 1, :, :].reshape(
-1, hidden_size)
v = qkv_weight[num_q_per_kv + 1:num_q_per_kv + 2, :, :].reshape(
-1, hidden_size)
split_weight = torch.cat(
[split(x, tp_size, rank) for x in [q, k, v]], dim=0)
qkv_bias = qkv_bias.reshape(num_q_per_kv + 2, -1)
q = qkv_bias[:num_q_per_kv, :].reshape(-1)
k = qkv_bias[num_q_per_kv:num_q_per_kv + 1, :].reshape(-1)
v = qkv_bias[num_q_per_kv + 1:num_q_per_kv + 2, :].reshape(-1)
split_bias = torch.cat([split(x, tp_size, rank) for x in [q, k, v]],
dim=0)
else:
split_weight = split_qkv_tp(qkv_weight, num_heads, hidden_size,
tp_size, rank)
split_bias = split_qkv_bias_tp(qkv_bias, num_heads, hidden_size,
tp_size, rank)
weights.update(get_weight(split_weight, prefix, split_bias))
prefix = layer_prefix + 'attention.dense'
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
weights, prefix, dtype)
split_v = split_matrix_tp(attn_dense_weight, tp_size, rank, dim=1)
weights.update(get_weight(split_v, prefix, attn_dense_bias))
prefix = layer_prefix + 'mlp.fc'
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(weights, prefix, dtype)
split_v = split_matrix_tp(mlp_fc_weight, tp_size, rank, dim=0)
bias = split_matrix_tp(mlp_fc_bias, tp_size, rank, dim=0)
weights.update(get_weight(split_v, prefix, bias))
prefix = layer_prefix + 'mlp.proj'
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
weights, prefix, dtype)
split_v = split_matrix_tp(mlp_proj_weight, tp_size, rank, dim=1)
weights.update(get_weight(split_v, prefix, mlp_proj_bias))
weights['transformer.vocab_embedding.weight'] = split_embedding(
weights['transformer.vocab_embedding.weight'], tp_size, rank)
weights['lm_head.weight'] = split_matrix_tp(weights['lm_head.weight'],
tp_size,
rank,
dim=0)
return weights
def convert_hf_weights(hf_model, config, args, rank):
torch_dtype = str_dtype_to_torch(args.dtype)
hf_state_dict = hf_model.state_dict()
weights = {}
# replace key name
for key, value in hf_state_dict.items():
# Decoder Layers
if "model.layers." in key:
key = key.replace("model.layers.", "transformer.layers.")
key = key.replace("self_attn.", "attention.")
key = key.replace("query_key_value.", "qkv.")
key = key.replace("mlp.up_proj.", "mlp.fc.")
key = key.replace("mlp.down_proj.", "mlp.proj.")
key = key.replace("post_attention_layernorm.", "post_layernorm.")
# Embedding
key = key.replace("model.embed_tokens.weight",
"transformer.vocab_embedding.weight")
# Final Layer norm
key = key.replace("model.final_layernorm.", "transformer.ln_f.")
weights[key] = value.to(torch_dtype).cpu()
weights['lm_head.weight'] = weights[
'transformer.vocab_embedding.weight'].clone()
# Transform QKV weights from custom Phi3Small format to TRT-LLM format
for key, value in weights.items():
if "qkv." in key:
weights[key] = shuffle_qkv_weights(weights[key], config)
weights = split_weights_tp(config, weights, args, rank, torch_dtype)
return weights
def convert_hf_config(hf_config, dtype, args):
config = {
'architecture': 'Phi3SmallForCausalLM',
'dtype': dtype,
'num_hidden_layers': hf_config.num_hidden_layers,
'num_attention_heads': hf_config.num_attention_heads,
'num_kv_heads': hf_config.num_key_value_heads,
'rotary_embedding_base': hf_config.rope_embedding_base,
'hidden_size': hf_config.hidden_size,
'intermediate_size': hf_config.intermediate_size,
'vocab_size': hf_config.vocab_size,
'max_position_embeddings': hf_config.max_position_embeddings,
'hidden_act': hf_config.hidden_act,
'share_embedding_table': False,
'gegelu_limit': hf_config.gegelu_limit,
'mup_attn_multiplier': hf_config.mup_attn_multiplier,
'mup_embedding_multiplier': hf_config.mup_embedding_multiplier,
'mup_use_scaling': hf_config.mup_use_scaling,
'mup_width_multiplier': hf_config.mup_width_multiplier,
'blocksparse_block_size': hf_config.blocksparse_block_size,
'blocksparse_homo_head_pattern':
hf_config.blocksparse_homo_head_pattern,
'blocksparse_num_local_blocks': hf_config.blocksparse_num_local_blocks,
'blocksparse_vertical_stride': hf_config.blocksparse_vert_stride,
'dense_attention_every_n_layers':
hf_config.dense_attention_every_n_layers,
}
if args is not None:
config.update({
'mapping': {
'world_size': args.tp_size * args.pp_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
}
})
if args.use_weight_only and args.weight_only_precision == 'int8':
config.update({'quantization': {'quant_algo': QuantAlgo.W8A16}})
elif args.use_weight_only and args.weight_only_precision == 'int4':
config.update({'quantization': {'quant_algo': QuantAlgo.W4A16}})
if hf_config.max_position_embeddings >= 128000:
config.update({
'original_max_position_embeddings':
hf_config.original_max_position_embeddings,
'longrope_scaling_short_factors':
hf_config.rope_scaling["short_factor"],
'longrope_scaling_long_factors':
hf_config.rope_scaling["long_factor"],
'longrope_long_mscale':
hf_config.rope_scaling["long_mscale"],
'longrope_short_mscale':
hf_config.rope_scaling["short_mscale"]
})
return config