mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
849 lines
34 KiB
Python
849 lines
34 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import asyncio
|
|
import json
|
|
import os
|
|
import time
|
|
import uuid
|
|
from collections.abc import AsyncGenerator
|
|
from copy import copy
|
|
from typing import Literal, Optional, OrderedDict, Union
|
|
|
|
# yapf: disable
|
|
from openai.types.responses import (ResponseCompletedEvent,
|
|
ResponseContentPartAddedEvent,
|
|
ResponseContentPartDoneEvent,
|
|
ResponseCreatedEvent,
|
|
ResponseFunctionToolCall,
|
|
ResponseInProgressEvent, ResponseOutputItem,
|
|
ResponseOutputItemAddedEvent,
|
|
ResponseOutputItemDoneEvent,
|
|
ResponseOutputMessage, ResponseOutputText,
|
|
ResponseReasoningItem,
|
|
ResponseReasoningTextDeltaEvent,
|
|
ResponseReasoningTextDoneEvent,
|
|
ResponseTextDeltaEvent,
|
|
ResponseTextDoneEvent)
|
|
# yapf: enable
|
|
from openai.types.responses.response_function_web_search import (
|
|
ActionFind, ActionOpenPage, ActionSearch, ResponseFunctionWebSearch)
|
|
from openai.types.responses.response_reasoning_item import Content
|
|
from openai.types.responses.tool import Tool
|
|
from openai_harmony import (Author, Conversation, DeveloperContent,
|
|
HarmonyEncodingName, Message, ReasoningEffort, Role,
|
|
StreamState, SystemContent, TextContent,
|
|
ToolDescription, load_harmony_encoding)
|
|
|
|
from tensorrt_llm.llmapi import SamplingParams
|
|
from tensorrt_llm.llmapi.llm import RequestOutput
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.serve.openai_protocol import (OpenAIBaseModel,
|
|
ResponseInputOutputItem,
|
|
ResponsesRequest,
|
|
ResponsesResponse)
|
|
|
|
from .harmony_adapter import HarmonyAdapter
|
|
|
|
REASONING_EFFORT = {
|
|
"high": ReasoningEffort.HIGH,
|
|
"medium": ReasoningEffort.MEDIUM,
|
|
"low": ReasoningEffort.LOW,
|
|
}
|
|
|
|
ENABLE_RESPONSES_DEBUG_MSG = False
|
|
|
|
|
|
def responses_debug_log(msg):
|
|
if ENABLE_RESPONSES_DEBUG_MSG:
|
|
logger.debug(msg)
|
|
|
|
|
|
_harmony_encoding = None
|
|
|
|
|
|
def random_uuid():
|
|
return str(uuid.uuid4().hex)
|
|
|
|
|
|
def get_encoding():
|
|
global _harmony_encoding
|
|
if _harmony_encoding is None:
|
|
_harmony_encoding = load_harmony_encoding(
|
|
HarmonyEncodingName.HARMONY_GPT_OSS)
|
|
return _harmony_encoding
|
|
|
|
|
|
def decode_tokens(tokens):
|
|
return get_encoding().decode(tokens)
|
|
|
|
|
|
def parse_response_input(
|
|
input_msg: ResponseInputOutputItem,
|
|
prev_responses: list[Union[ResponseOutputItem, ResponseReasoningItem]]
|
|
) -> Message:
|
|
if not isinstance(input_msg, dict):
|
|
input_msg = input_msg.model_dump()
|
|
|
|
responses_debug_log(f"------- Parsing input -----------")
|
|
responses_debug_log(input_msg)
|
|
responses_debug_log("")
|
|
|
|
if "type" not in input_msg or input_msg["type"] == "message":
|
|
role = input_msg["role"]
|
|
content = input_msg["content"]
|
|
if role == "system":
|
|
# User is trying to set a system message. Change it to:
|
|
# <|start|>developer<|message|># Instructions
|
|
# {instructions}<|end|>
|
|
role = "developer"
|
|
text_prefix = "Instructions:\n"
|
|
else:
|
|
text_prefix = ""
|
|
if isinstance(content, str):
|
|
msg = Message.from_role_and_content(role, text_prefix + content)
|
|
elif isinstance(content, list):
|
|
contents = [
|
|
TextContent(text=text_prefix + c["text"]) for c in content
|
|
]
|
|
msg = Message.from_role_and_contents(role, contents)
|
|
else:
|
|
logger.warning("Responses API: Invalid input message type")
|
|
msg = None
|
|
elif input_msg["type"] == "function_call_output":
|
|
call_id = input_msg["call_id"]
|
|
call_response: Optional[ResponseFunctionToolCall] = None
|
|
for prev_response in reversed(prev_responses):
|
|
if isinstance(prev_response, ResponseFunctionToolCall
|
|
) and prev_response.call_id == call_id:
|
|
call_response = prev_response
|
|
break
|
|
if call_response is None:
|
|
raise ValueError(f"No call message found for {call_id}")
|
|
msg = Message.from_author_and_content(
|
|
Author.new(Role.TOOL, f"functions.{call_response.name}"),
|
|
input_msg["output"])
|
|
elif input_msg["type"] == "reasoning":
|
|
content = input_msg["content"]
|
|
assert len(content) == 1
|
|
msg = Message.from_role_and_content(Role.ASSISTANT, content[0]["text"])
|
|
elif input_msg["type"] == "function_call":
|
|
msg = Message.from_role_and_content(Role.ASSISTANT,
|
|
input_msg["arguments"])
|
|
msg = msg.with_channel("commentary")
|
|
msg = msg.with_recipient(f"functions.{input_msg['name']}")
|
|
msg = msg.with_content_type("json")
|
|
else:
|
|
raise ValueError(f"Unknown input type: {input_msg['type']}")
|
|
return msg
|
|
|
|
|
|
class ConversationHistoryStore:
|
|
|
|
def __init__(self, resp_capacity: int = 16, max_conversations=32):
|
|
self.response_capacity = resp_capacity
|
|
self.conversation_capacity = resp_capacity * 4
|
|
self.max_conversations = max_conversations
|
|
|
|
self.responses_lock = asyncio.Lock()
|
|
self.responses: OrderedDict[str, ResponsesResponse] = OrderedDict()
|
|
|
|
self.conversations_lock = asyncio.Lock()
|
|
self.conversations: OrderedDict[str, list[Message]] = OrderedDict()
|
|
self.response_to_conversation: dict[str, str] = {}
|
|
self.conversation_to_response: dict[str, str] = {}
|
|
|
|
async def load_response(self, resp_id: str) -> ResponsesResponse:
|
|
responses_debug_log(f"ConversationHistoryStore loading resp: {resp_id}")
|
|
async with self.responses_lock:
|
|
return self.responses.get(resp_id)
|
|
|
|
async def store_response(self,
|
|
resp: ResponsesResponse,
|
|
resp_msgs: Optional[list[Message]] = [],
|
|
prev_resp_id: Optional[str] = None) -> None:
|
|
resp_id = resp.id
|
|
responses_debug_log(f"ConversationHistoryStore storing resp: {resp_id}")
|
|
async with self.responses_lock:
|
|
self.responses[resp_id] = resp
|
|
if len(self.responses) > self.response_capacity:
|
|
self._pop_response()
|
|
|
|
async with self.conversations_lock:
|
|
conversation_id: str
|
|
if resp_id in self.response_to_conversation:
|
|
conversation_id = self.response_to_conversation[resp_id]
|
|
self.conversations[conversation_id].extend(resp_msgs)
|
|
elif prev_resp_id is not None:
|
|
conversation_id = self.response_to_conversation[prev_resp_id]
|
|
self.conversations[conversation_id].extend(resp_msgs)
|
|
while len(self.conversations[conversation_id]
|
|
) > self.conversation_capacity:
|
|
self._pop_conversation(resp_id)
|
|
else:
|
|
conversation_id = random_uuid()
|
|
self.conversations[conversation_id] = resp_msgs
|
|
|
|
responses_debug_log(
|
|
f" * storing at conversation id: {conversation_id}")
|
|
|
|
self.response_to_conversation[resp_id] = conversation_id
|
|
self.conversation_to_response[conversation_id] = resp_id
|
|
self._update_visited_conversation(conversation_id)
|
|
|
|
async def store_messages(self, resp_id: str, msgs: list[Message],
|
|
prev_resp_id: Optional[str]):
|
|
responses_debug_log(f"ConversationHistoryStore storing msg:")
|
|
for msg in msgs:
|
|
responses_debug_log(f" -> {msg.to_json()}")
|
|
|
|
async with self.conversations_lock:
|
|
conversation_id: str
|
|
if prev_resp_id is not None:
|
|
conversation_id = self.response_to_conversation[prev_resp_id]
|
|
else:
|
|
conversation_id = random_uuid()
|
|
|
|
responses_debug_log(
|
|
f" * storing at conversation: {conversation_id}")
|
|
self.conversations[conversation_id] = msgs
|
|
if len(self.conversations[conversation_id]
|
|
) > self.conversation_capacity:
|
|
self._pop_conversation(resp_id)
|
|
|
|
self.response_to_conversation[resp_id] = conversation_id
|
|
self.conversation_to_response[conversation_id] = resp_id
|
|
self._update_visited_conversation(conversation_id)
|
|
|
|
async def append_messages(self, resp_id: str, msgs: list[Message]):
|
|
responses_debug_log(f"ConversationHistoryStore appending msgs:")
|
|
for msg in msgs:
|
|
responses_debug_log(f" -> {msg.to_json()}")
|
|
|
|
async with self.conversations_lock:
|
|
assert resp_id in self.response_to_conversation
|
|
conversation_id = self.response_to_conversation[resp_id]
|
|
|
|
responses_debug_log(
|
|
f" * appending at conversation: {conversation_id}")
|
|
self.conversations[conversation_id].extend(msgs)
|
|
if len(self.conversations[conversation_id]
|
|
) > self.conversation_capacity:
|
|
self._pop_conversation(resp_id)
|
|
self._update_visited_conversation(conversation_id)
|
|
|
|
async def get_conversation_history(self, resp_id: str) -> list[Message]:
|
|
responses_debug_log(f"ConversationHistoryStore getting prev_msgs:")
|
|
responses_debug_log(f" -> prev_resp_id: {resp_id}")
|
|
async with self.conversations_lock:
|
|
if resp_id in self.response_to_conversation:
|
|
conversation_id = self.response_to_conversation[resp_id]
|
|
self._update_visited_conversation(conversation_id)
|
|
return self.conversations.get(conversation_id, [])
|
|
|
|
return []
|
|
|
|
def _update_visited_conversation(self, conversation_id) -> None:
|
|
if conversation_id not in self.conversations:
|
|
return
|
|
|
|
self.conversations.move_to_end(conversation_id)
|
|
if len(self.conversations) > self.max_conversations:
|
|
removed_id, _ = self.conversations.popitem(last=False)
|
|
responses_debug_log(
|
|
f"ConversationHistoryStore Removing conversation {removed_id}")
|
|
removed_resp_id = self.conversation_to_response[removed_id]
|
|
# The responses may have been removed due to response capacity
|
|
if removed_resp_id in self.response_to_conversation:
|
|
self.response_to_conversation.pop(removed_resp_id)
|
|
self.conversation_to_response.pop(removed_id)
|
|
|
|
def _pop_conversation(self, resp_id) -> None:
|
|
conversation_id = self.response_to_conversation.get(resp_id, None)
|
|
if conversation_id is None:
|
|
return
|
|
|
|
conversation = self.conversations[conversation_id]
|
|
first_conversation_range = []
|
|
for i, msg in enumerate(conversation):
|
|
if msg.author.role == Role.USER:
|
|
first_conversation_range.append(i)
|
|
elif msg.channel == "final":
|
|
first_conversation_range.append(i)
|
|
break
|
|
del conversation[
|
|
first_conversation_range[0]:first_conversation_range[1] + 1]
|
|
|
|
def _pop_response(self) -> None:
|
|
responses_debug_log(f"responses type: {type(self.responses)}")
|
|
resp_id, _ = self.responses.popitem(last=False)
|
|
if resp_id in self.response_to_conversation:
|
|
self.response_to_conversation.pop(resp_id)
|
|
|
|
|
|
def get_system_message(
|
|
model_identity: Optional[str] = None,
|
|
reasoning_effort: Optional[Literal["high", "medium", "low"]] = None,
|
|
start_date: Optional[str] = None,
|
|
browser_description: Optional[str] = None,
|
|
python_description: Optional[str] = None,
|
|
) -> Message:
|
|
sys_msg_content = SystemContent.new()
|
|
if model_identity is not None:
|
|
sys_msg_content = sys_msg_content.with_model_identity(model_identity)
|
|
if reasoning_effort is not None:
|
|
sys_msg_content = sys_msg_content.with_reasoning_effort(
|
|
REASONING_EFFORT[reasoning_effort])
|
|
if start_date:
|
|
sys_msg_content = sys_msg_content.with_conversation_start_date(
|
|
start_date)
|
|
if browser_description is not None:
|
|
sys_msg_content = sys_msg_content.with_tools(browser_description)
|
|
if python_description is not None:
|
|
sys_msg_content = sys_msg_content.with_tools(python_description)
|
|
sys_msg = Message.from_role_and_content(Role.SYSTEM, sys_msg_content)
|
|
return sys_msg
|
|
|
|
|
|
def get_developer_message(instructions: Optional[str] = None,
|
|
tools: Optional[list[Tool]] = None) -> Message:
|
|
dev_msg_content = DeveloperContent.new()
|
|
if instructions is not None:
|
|
dev_msg_content = dev_msg_content.with_instructions(instructions)
|
|
if tools is not None:
|
|
function_tools = []
|
|
for tool in tools:
|
|
if tool.type in ("web_search_preview", "code_interpreter"):
|
|
# These are built-in tools that are added to the system message.
|
|
pass
|
|
elif tool.type == "function":
|
|
function_tools.append(tool)
|
|
else:
|
|
raise ValueError(f"tool type {tool.type} not supported")
|
|
if function_tools:
|
|
function_tool_descriptions = [
|
|
ToolDescription.new(
|
|
name=tool.name,
|
|
description=tool.description,
|
|
parameters=tool.parameters,
|
|
) for tool in function_tools
|
|
]
|
|
dev_msg_content = dev_msg_content.with_function_tools(
|
|
function_tool_descriptions)
|
|
dev_msg = Message.from_role_and_content(Role.DEVELOPER, dev_msg_content)
|
|
return dev_msg
|
|
|
|
|
|
def get_user_message(content: str) -> Message:
|
|
return Message.from_role_and_content(Role.USER, content)
|
|
|
|
|
|
def construct_harmony_messages(
|
|
request: ResponsesRequest,
|
|
prev_response: Optional[ResponsesResponse],
|
|
prev_msgs: list[Message] = [],
|
|
) -> list[Message]:
|
|
"""Construct messages from request input, includes conversation history messages if exists."""
|
|
messages: list[Message] = []
|
|
if prev_response is None:
|
|
# New conversation.
|
|
reasoning_effort = (request.reasoning.effort
|
|
if request.reasoning else None)
|
|
sys_msg = get_system_message(reasoning_effort=reasoning_effort, )
|
|
messages.append(sys_msg)
|
|
dev_msg = get_developer_message(request.instructions, request.tools)
|
|
messages.append(dev_msg)
|
|
else:
|
|
messages.extend(prev_msgs)
|
|
# Append the new input.
|
|
# Responses API supports simple text inputs without chat format.
|
|
if isinstance(request.input, str):
|
|
messages.append(get_user_message(request.input))
|
|
else:
|
|
if prev_response is not None:
|
|
prev_outputs = copy(prev_response.output)
|
|
else:
|
|
prev_outputs = []
|
|
for input_msg in request.input:
|
|
msg = parse_response_input(input_msg, prev_outputs)
|
|
if msg is not None:
|
|
messages.append(msg)
|
|
# User passes in a a tool call request and its output. We need
|
|
# to add the tool call request to prev_outputs so that the
|
|
# parse_response_input can find the tool call request when
|
|
# parsing the tool call output.
|
|
if isinstance(input_msg, ResponseFunctionToolCall):
|
|
prev_outputs.append(input_msg)
|
|
return messages
|
|
|
|
|
|
def render_for_completion(messages: list[Message]) -> list[int]:
|
|
conversation = Conversation.from_messages(messages)
|
|
responses_debug_log("Rendering conversation:")
|
|
responses_debug_log(conversation.to_json())
|
|
token_ids = get_encoding().render_conversation_for_completion(
|
|
conversation, Role.ASSISTANT)
|
|
return token_ids
|
|
|
|
|
|
def parse_output_tokens(tokens: list[int]) -> list[Message]:
|
|
return get_encoding().parse_messages_from_completion_tokens(
|
|
tokens, role=Role.ASSISTANT)
|
|
|
|
|
|
def parse_output_message(message: Message) -> list[ResponseOutputItem]:
|
|
"""
|
|
Parse a Harmony message into a list of output response items.
|
|
"""
|
|
if message.author.role != "assistant":
|
|
# This is a message from a tool to the assistant (e.g., search result).
|
|
# Don't include it in the final output for now. This aligns with
|
|
# OpenAI's behavior on models like o4-mini.
|
|
return []
|
|
|
|
output_items: list[ResponseOutputItem] = []
|
|
recipient = message.recipient
|
|
if recipient is not None and recipient.startswith("browser."):
|
|
if len(message.content) != 1:
|
|
raise ValueError("Invalid number of contents in browser message")
|
|
content = message.content[0]
|
|
browser_call = json.loads(content.text)
|
|
# TODO: translate to url properly!
|
|
if recipient == "browser.search":
|
|
action = ActionSearch(
|
|
query=f"cursor:{browser_call.get('query', '')}", type="search")
|
|
elif recipient == "browser.open":
|
|
action = ActionOpenPage(url=f"cursor:{browser_call.get('url', '')}",
|
|
type="open_page")
|
|
elif recipient == "browser.find":
|
|
action = ActionFind(pattern=browser_call["pattern"],
|
|
url=f"cursor:{browser_call.get('url', '')}",
|
|
type="find")
|
|
else:
|
|
raise ValueError(f"Unknown browser action: {recipient}")
|
|
web_search_item = ResponseFunctionWebSearch(
|
|
id=f"ws_{random_uuid()}",
|
|
action=action,
|
|
status="completed",
|
|
type="web_search_call",
|
|
)
|
|
output_items.append(web_search_item)
|
|
elif message.channel == "analysis":
|
|
for content in message.content:
|
|
reasoning_item = ResponseReasoningItem(
|
|
id=f"rs_{random_uuid()}",
|
|
summary=[],
|
|
type="reasoning",
|
|
content=[Content(text=content.text, type="reasoning_text")],
|
|
status=None,
|
|
)
|
|
output_items.append(reasoning_item)
|
|
elif message.channel == "commentary":
|
|
if message.recipient is None:
|
|
pass
|
|
elif message.recipient.startswith("functions."):
|
|
function_name = message.recipient.split(".")[-1]
|
|
for content in message.content:
|
|
random_id = random_uuid()
|
|
response_item = ResponseFunctionToolCall(
|
|
arguments=content.text,
|
|
call_id=f"call_{random_id}",
|
|
type="function_call",
|
|
name=function_name,
|
|
id=f"fc_{random_id}",
|
|
)
|
|
output_items.append(response_item)
|
|
elif message.recipient.startswith(
|
|
"python") or message.recipient.startswith("browser"):
|
|
for content in message.content:
|
|
reasoning_item = ResponseReasoningItem(
|
|
id=f"rs_{random_uuid()}",
|
|
summary=[],
|
|
type="reasoning",
|
|
content=[Content(text=content.text, type="reasoning_text")],
|
|
status=None,
|
|
)
|
|
output_items.append(reasoning_item)
|
|
else:
|
|
raise ValueError(f"Unknown recipient: {message.recipient}")
|
|
elif message.channel == "final":
|
|
contents = []
|
|
for content in message.content:
|
|
output_text = ResponseOutputText(
|
|
text=content.text,
|
|
annotations=[], # TODO
|
|
type="output_text",
|
|
logprobs=None, # TODO
|
|
)
|
|
contents.append(output_text)
|
|
text_item = ResponseOutputMessage(
|
|
id=f"msg_{random_uuid()}",
|
|
content=contents,
|
|
role=message.author.role,
|
|
status="completed",
|
|
type="message",
|
|
)
|
|
output_items.append(text_item)
|
|
else:
|
|
raise ValueError(f"Unknown channel: {message.channel}")
|
|
return output_items
|
|
|
|
|
|
def finish_reason_mapping(finish_reason: str) -> str:
|
|
match finish_reason:
|
|
case 'stop':
|
|
return 'completed'
|
|
case 'length':
|
|
return 'incomplete'
|
|
case 'timeout':
|
|
return 'failed'
|
|
case 'cancelled':
|
|
return 'cancelled'
|
|
|
|
raise RuntimeError("Should never reach here!")
|
|
|
|
|
|
async def request_preprocess(request: ResponsesRequest,
|
|
prev_response: Optional[ResponsesResponse],
|
|
harmony_adapter: HarmonyAdapter,
|
|
conversation_store: ConversationHistoryStore,
|
|
enable_store=False):
|
|
# TODO: fix default_max_tokens
|
|
sampling_params = request.to_sampling_params(
|
|
default_max_tokens=int(16384),
|
|
default_sampling_params={
|
|
"stop_token_ids": harmony_adapter.get_stop_tokens()
|
|
})
|
|
|
|
prev_response_id = request.previous_response_id
|
|
|
|
# TODO: better way to enable metrics
|
|
if len(os.getenv("TRTLLM_KVCACHE_TIME_OUTPUT_PATH", "")) > 0:
|
|
sampling_params.return_perf_metrics = True
|
|
|
|
prev_msgs = []
|
|
if enable_store:
|
|
prev_msgs = await conversation_store.get_conversation_history(
|
|
prev_response_id)
|
|
|
|
responses_debug_log(f"Prev msgs:")
|
|
for msg in prev_msgs:
|
|
responses_debug_log(f" -> {msg.to_json()}")
|
|
|
|
messages = construct_harmony_messages(request,
|
|
prev_response,
|
|
prev_msgs=prev_msgs)
|
|
|
|
if enable_store and request.store:
|
|
# Remove reasoning messages to save token usage during multi-turn conversation
|
|
msgs_to_store = [msg for msg in messages if msg.channel != "analysis"]
|
|
await conversation_store.store_messages(request.request_id,
|
|
msgs_to_store, prev_response_id)
|
|
|
|
input_tokens = render_for_completion(messages)
|
|
|
|
responses_debug_log("======= Complete Inputs to model =======")
|
|
responses_debug_log(decode_tokens(input_tokens))
|
|
responses_debug_log("========================================")
|
|
return input_tokens, sampling_params
|
|
|
|
|
|
async def create_response(
|
|
generator,
|
|
request: ResponsesRequest,
|
|
sampling_params,
|
|
model_name: str,
|
|
conversation_store: ConversationHistoryStore,
|
|
generation_result: RequestOutput = None,
|
|
enable_store=False,
|
|
create_time: int = None,
|
|
) -> ResponsesResponse:
|
|
|
|
final_res: Optional[RequestOutput] = None
|
|
response_creation_time = create_time if create_time is not None else int(
|
|
time.time())
|
|
prev_response_id = request.previous_response_id
|
|
|
|
if generation_result is not None:
|
|
final_res = generation_result
|
|
else:
|
|
final_res = await generator
|
|
|
|
if final_res is None:
|
|
raise RuntimeError("No output generated or provided")
|
|
|
|
responses_debug_log("================================================")
|
|
responses_debug_log("RAW MODEL OUTPUT:")
|
|
responses_debug_log(final_res.outputs)
|
|
responses_debug_log("================================================")
|
|
|
|
output_messages = parse_output_tokens(final_res.outputs[0].token_ids)
|
|
|
|
responses_debug_log(f"output messages: {len(output_messages)}")
|
|
for msg in output_messages:
|
|
responses_debug_log(f" -> {msg.to_json()}")
|
|
|
|
# prepare responses output
|
|
output_content = []
|
|
for msg in output_messages:
|
|
output_content.extend(parse_output_message(msg))
|
|
|
|
response = ResponsesResponse.from_request(
|
|
request=request,
|
|
sampling_params=sampling_params,
|
|
model_name=model_name,
|
|
created_time=response_creation_time,
|
|
output=output_content,
|
|
status=finish_reason_mapping(final_res.outputs[0].finish_reason),
|
|
)
|
|
|
|
if enable_store and request.store:
|
|
await conversation_store.store_response(resp=response,
|
|
resp_msgs=output_messages,
|
|
prev_resp_id=prev_response_id)
|
|
|
|
responses_debug_log("========== Response ===========")
|
|
responses_debug_log(response)
|
|
responses_debug_log("===============================")
|
|
return response
|
|
|
|
|
|
async def process_streaming_events(
|
|
request: ResponsesRequest,
|
|
sampling_params: SamplingParams,
|
|
generator,
|
|
harmony_adapter: HarmonyAdapter,
|
|
model_name: str,
|
|
conversation_store: ConversationHistoryStore,
|
|
create_time: int = None,
|
|
enable_store=False) -> AsyncGenerator[str, None]:
|
|
sequence_number = 0
|
|
response_creation_time = create_time if create_time is not None else int(
|
|
time.time())
|
|
final_res: Optional[RequestOutput] = None
|
|
|
|
def _send_event(event: OpenAIBaseModel):
|
|
nonlocal sequence_number
|
|
# Set sequence_number if the event has this attribute
|
|
if hasattr(event, 'sequence_number'):
|
|
event.sequence_number = sequence_number
|
|
sequence_number += 1
|
|
# Get event type from the event's type field if it exists
|
|
event_type = getattr(event, 'type', 'unknown')
|
|
return (f"event: {event_type}\n"
|
|
f"data: {event.model_dump_json(indent=None)}\n\n")
|
|
|
|
current_content_index = 0 # FIXME: this number is never changed
|
|
current_output_index = 0
|
|
current_item_id = "" # FIXME: this number is never changed
|
|
sent_output_item_added = False
|
|
|
|
initial_response = ResponsesResponse.from_request(
|
|
request,
|
|
sampling_params,
|
|
model_name=model_name,
|
|
created_time=response_creation_time,
|
|
output=[],
|
|
status="in_progress",
|
|
usage=None,
|
|
).model_dump()
|
|
yield _send_event(
|
|
ResponseCreatedEvent(
|
|
type="response.created",
|
|
sequence_number=-1,
|
|
response=initial_response,
|
|
))
|
|
yield _send_event(
|
|
ResponseInProgressEvent(
|
|
type="response.in_progress",
|
|
sequence_number=-1,
|
|
response=initial_response,
|
|
))
|
|
|
|
tools = [tool.model_dump() for tool in request.tools]
|
|
stream_request_id = f"responses-api-{request.request_id}"
|
|
async for res in generator:
|
|
final_res = res
|
|
output = res.outputs[0]
|
|
|
|
messages = harmony_adapter.stateful_stream_harmony_tokens_to_openai_messages(
|
|
stream_request_id, output.token_ids_diff, tools,
|
|
request.tool_choice)
|
|
stream_state = harmony_adapter.get_stream_state(stream_request_id)
|
|
assert stream_state is not None
|
|
parser = stream_state.get_parser()
|
|
|
|
if parser.state == StreamState.EXPECT_START:
|
|
current_output_index += 1
|
|
sent_output_item_added = False
|
|
|
|
if len(messages) > 0:
|
|
previous_item = messages[-1]
|
|
if previous_item.recipient is not None:
|
|
# Deal with tool call here
|
|
pass
|
|
elif previous_item.channel == "analysis":
|
|
reasoning_item = ResponseReasoningItem(
|
|
type="reasoning",
|
|
content=[
|
|
Content(
|
|
text=previous_item.content[0].text,
|
|
type="reasoning_text",
|
|
),
|
|
],
|
|
status="completed",
|
|
id=current_item_id,
|
|
summary=[],
|
|
)
|
|
yield _send_event(
|
|
ResponseReasoningTextDoneEvent(
|
|
type="response.reasoning_text.done",
|
|
item_id=current_item_id,
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
content_index=current_content_index,
|
|
text=previous_item.content[0].text,
|
|
))
|
|
yield _send_event(
|
|
ResponseOutputItemDoneEvent(
|
|
type="response.output_item.done",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item=reasoning_item,
|
|
))
|
|
elif previous_item.channel == "final":
|
|
text_content = ResponseOutputText(
|
|
type="output_text",
|
|
text=previous_item.content[0].text,
|
|
annotations=[],
|
|
)
|
|
yield _send_event(
|
|
ResponseTextDoneEvent(
|
|
type="response.output_text.done",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
content_index=current_content_index,
|
|
text=previous_item.content[0].text,
|
|
logprobs=[],
|
|
item_id=current_item_id,
|
|
))
|
|
yield _send_event(
|
|
ResponseContentPartDoneEvent(
|
|
type="response.content_part.done",
|
|
sequence_number=-1,
|
|
item_id=current_item_id,
|
|
output_index=current_output_index,
|
|
content_index=current_content_index,
|
|
part=text_content,
|
|
))
|
|
yield _send_event(
|
|
ResponseOutputItemDoneEvent(
|
|
type="response.output_item.done",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item=ResponseOutputMessage(
|
|
id=current_item_id,
|
|
type="message",
|
|
role="assistant",
|
|
content=[text_content],
|
|
status="completed",
|
|
),
|
|
))
|
|
|
|
if parser.last_content_delta:
|
|
if (parser.current_channel == "final"
|
|
and parser.current_recipient is None):
|
|
if not sent_output_item_added:
|
|
sent_output_item_added = True
|
|
yield _send_event(
|
|
ResponseOutputItemAddedEvent(
|
|
type="response.output_item.added",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item=ResponseOutputMessage(
|
|
id=current_item_id,
|
|
type="message",
|
|
role="assistant",
|
|
content=[],
|
|
status="in_progress",
|
|
),
|
|
))
|
|
yield _send_event(
|
|
ResponseContentPartAddedEvent(
|
|
type="response.content_part.added",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item_id=current_item_id,
|
|
content_index=current_content_index,
|
|
part=ResponseOutputText(
|
|
type="output_text",
|
|
text="",
|
|
annotations=[],
|
|
logprobs=[],
|
|
),
|
|
))
|
|
yield _send_event(
|
|
ResponseTextDeltaEvent(
|
|
type="response.output_text.delta",
|
|
sequence_number=-1,
|
|
content_index=current_content_index,
|
|
output_index=current_output_index,
|
|
item_id=current_item_id,
|
|
delta=parser.last_content_delta,
|
|
# TODO, use logprobs from ctx.last_request_output
|
|
logprobs=[],
|
|
))
|
|
elif (parser.current_channel == "analysis"
|
|
and parser.current_recipient is None):
|
|
if not sent_output_item_added:
|
|
sent_output_item_added = True
|
|
yield _send_event(
|
|
ResponseOutputItemAddedEvent(
|
|
type="response.output_item.added",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item=ResponseReasoningItem(
|
|
type="reasoning",
|
|
id=current_item_id,
|
|
summary=[],
|
|
status="in_progress",
|
|
),
|
|
))
|
|
yield _send_event(
|
|
ResponseContentPartAddedEvent(
|
|
type="response.content_part.added",
|
|
sequence_number=-1,
|
|
output_index=current_output_index,
|
|
item_id=current_item_id,
|
|
content_index=current_content_index,
|
|
part=ResponseOutputText(
|
|
type="output_text",
|
|
text="",
|
|
annotations=[],
|
|
logprobs=[],
|
|
),
|
|
))
|
|
yield _send_event(
|
|
ResponseReasoningTextDeltaEvent(
|
|
type="response.reasoning_text.delta",
|
|
item_id=current_item_id,
|
|
output_index=current_output_index,
|
|
content_index=current_content_index,
|
|
delta=parser.last_content_delta,
|
|
sequence_number=-1,
|
|
))
|
|
|
|
# TODO(JunyiXu-nv): support built-in tools(python/browser/code interpreter)
|
|
|
|
final_response = await create_response(generator, request, sampling_params,
|
|
model_name, conversation_store,
|
|
final_res, enable_store,
|
|
response_creation_time)
|
|
|
|
yield _send_event(
|
|
ResponseCompletedEvent(
|
|
type="response.completed",
|
|
sequence_number=-1,
|
|
response=final_response.model_dump(),
|
|
))
|