TensorRT-LLMs/cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
ChristinaZ db1c271bc6
[None][feat] Revise the calculation related to TileN in routing of MOE TRTLLM backend (#8148)
Signed-off-by: Christina Zhang <83400082+ChristinaZ@users.noreply.github.com>
2025-10-16 09:15:46 +08:00

562 lines
25 KiB
Plaintext

/*
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DevKernel.h"
#include "RoutingKernel.h"
#include "runner.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/KernelRunner.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/trtllm/gen/SfLayoutDecl.h"
#include <iostream>
#include <tensorrt_llm/common/assert.h>
namespace tensorrt_llm
{
namespace kernels
{
namespace trtllmGenFp8BlockScaleMoe
{
namespace btg = batchedGemm::trtllm::gen;
namespace Routing
{
namespace
{
inline int32_t computeLog2(int32_t val, std::string const& name = "")
{
int32_t n = val;
int32_t out = 0;
while (n >>= 1)
{
++out;
}
if ((1 << out) != val)
{
out = -1;
}
return out;
}
} // namespace
Runner::Runner() {}
Runner::Runner(int32_t tileTokensDim)
: mTileTokensDim(tileTokensDim)
{
}
void Runner::run(void* routingLogits, void* routingBias, int32_t numTokens, int32_t numExperts, int32_t topK,
int32_t nGroup, int32_t topkGroup, int32_t localExpertOffset, int32_t localNumExperts, float routedScalingFactor,
int32_t* routingExpertIndexes, int32_t* expertCountHistogram, int32_t* permutedIdxSize,
int32_t* expandedIdxToPermutedIdx, int32_t* permutedIdxToExpandedIdx, int32_t* permutedIdxToTokenIdx,
void* expertWeights, int32_t* expertIds, int32_t* numTokensPerExpert, int32_t* ctaIdxXyToBatchIdx,
int32_t* ctaIdxXyToMnLimit, int32_t* numNonExitingCtas, btg::Dtype dtypeElt, bool useRoutingScalesOnInput,
bool useDeepSeekFp8, RoutingMethodType routingMethodType, cudaStream_t stream)
{
if (routingMethodType == RoutingMethodType::DeepSeekV3)
{
TLLM_CHECK_WITH_INFO(topK <= 8, "For DeepSeek routing method, must have topK <= 8");
TLLM_CHECK_WITH_INFO(topkGroup <= 4, "For DeepSeek routing method, must have topkGroup <= 4");
moe::dev::routing::routingDeepSeek::Data routingData;
routingData.mDtypeExpW = btg::Dtype::Bfloat16;
routingData.mUsePdl = true;
// output:
routingData.mPtrTopKPacked = routingExpertIndexes;
routingData.mPtrExpertCounts = expertCountHistogram;
routingData.mPtrPermutedIdxSize = permutedIdxSize;
routingData.mPtrExpandedIdxToPermutedIdx = expandedIdxToPermutedIdx;
routingData.mPtrPermutedIdxToTokenIdx = permutedIdxToTokenIdx;
routingData.mPtrTopKWeights = expertWeights;
routingData.mPtrCtaIdxXyToBatchIdx = ctaIdxXyToBatchIdx;
routingData.mPtrCtaIdxXyToMnLimit = ctaIdxXyToMnLimit;
routingData.mPtrNumNonExitingCtas = numNonExitingCtas;
// input:
routingData.mPtrRoutingBias = routingBias;
// Pass-through raw pointer; kernels will cast to the proper InputT based on routing method
routingData.mPtrScores = expertIds == nullptr ? routingLogits : nullptr;
routingData.mPtrTopKIds = expertIds;
routingData.mNumTokens = numTokens;
routingData.mNumExperts = numExperts;
routingData.mNumExpertGroups = nGroup;
routingData.mNumLimitedGroups = topkGroup;
routingData.mTopK = topK;
routingData.mPaddingLog2 = computeLog2(mTileTokensDim);
routingData.mTileTokensDim = mTileTokensDim;
routingData.mLocalExpertsStartIdx = localExpertOffset;
routingData.mLocalExpertsStrideLog2 = 0;
routingData.mNumLocalExperts = localNumExperts;
routingData.mRouteScale = routedScalingFactor;
routingData.mUseRoutingSoftmax = false;
moe::dev::routing::routingDeepSeek::run(routingData, stream);
}
else if (routingMethodType == RoutingMethodType::Llama4)
{
TLLM_CHECK_WITH_INFO(topK == 1, "For Llama routing method, must have topK == 1");
if (nGroup > 0 || topkGroup > 0)
{
TLLM_LOG_WARNING("For Llama routing method, nGroup/topkGroup is ignored, got %d/%d.", nGroup, topkGroup);
}
moe::dev::routing::routingLlama4::Data routingData;
routingData.mDtypeExpW = btg::Dtype::Bfloat16;
routingData.mUsePdl = true;
// output:
routingData.mPtrTopKPacked = routingExpertIndexes;
routingData.mPtrExpertCounts = expertCountHistogram;
routingData.mPtrPermutedIdxSize = permutedIdxSize;
routingData.mPtrExpandedIdxToPermutedIdx = expandedIdxToPermutedIdx;
routingData.mPtrPermutedIdxToTokenIdx = permutedIdxToTokenIdx;
routingData.mPtrTopKWeights = expertWeights;
routingData.mPtrCtaIdxXyToBatchIdx = ctaIdxXyToBatchIdx;
routingData.mPtrCtaIdxXyToMnLimit = ctaIdxXyToMnLimit;
routingData.mPtrNumNonExitingCtas = numNonExitingCtas;
// routingData.mAllToAllRouteAct = false;
// input:
// routingData.mPtrRoutingWeights = args.mRoutingWeights; // routing weights (don't need if not using gemm)
// routingData.mPtrRoutingBias = routingBias;
// Pass-through raw pointer; kernels will cast to the proper InputT based on routing method
routingData.mPtrScores = expertIds == nullptr ? routingLogits : nullptr;
routingData.mPtrTopKIds = expertIds;
// routingData.mPtrIn = args.mInputActs;
routingData.mNumTokens = numTokens;
// routingData.mHiddenDim = args.mHiddenDim;
routingData.mNumExperts = numExperts;
// routingData.mNumExpertGroups = nGroup;
// routingData.mNumLimitedGroups =topkGroup;
routingData.mTopK = topK;
routingData.mPaddingLog2 = computeLog2(mTileTokensDim);
routingData.mTileTokensDim = mTileTokensDim;
routingData.mLocalExpertsStartIdx = localExpertOffset;
routingData.mLocalExpertsStrideLog2 = 0;
routingData.mNumLocalExperts = localNumExperts;
// routingData.mRouteScale = routed_scaling_factor;
// routingData.mUseRoutingSoftmax = false;
moe::dev::routing::routingLlama4::run(routingData, stream);
}
else if (routingMethodType == RoutingMethodType::Renormalize /* default */
|| routingMethodType == RoutingMethodType::RenormalizeNaive /* Softmax -> TopK */)
{
moe::dev::routing::routingRenormalize::Data routingData;
//
// Config
//
routingData.mDtypeExpW = btg::Dtype::Bfloat16;
// routingData.mDtypeElt = dtypeElt; // no-op for now as hidden_state is not input
routingData.mUsePdl = true;
routingData.mDoSoftmaxBeforeTopK = routingMethodType == RoutingMethodType::RenormalizeNaive;
routingData.mNormTopkProb = routingMethodType == RoutingMethodType::RenormalizeNaive;
// Pass-through raw pointer; kernels will cast to the proper InputT based on routing method
routingData.mPtrScores = expertIds == nullptr ? routingLogits : nullptr;
//
// Outputs
//
routingData.mPtrTopKPacked = routingExpertIndexes;
routingData.mPtrExpertCounts = expertCountHistogram;
routingData.mPtrPermutedIdxSize = permutedIdxSize;
routingData.mPtrExpandedIdxToPermutedIdx = expandedIdxToPermutedIdx;
routingData.mPtrPermutedIdxToTokenIdx = permutedIdxToTokenIdx;
routingData.mPtrTopKWeights = expertWeights;
routingData.mPtrTopKIds = expertIds;
//
// Grouped Gemm Launch Config Buffers
//
routingData.mPtrCtaIdxXyToBatchIdx = ctaIdxXyToBatchIdx;
routingData.mPtrCtaIdxXyToMnLimit = ctaIdxXyToMnLimit;
routingData.mPtrNumNonExitingCtas = numNonExitingCtas;
//
// Inputs
//
routingData.mNumTokens = numTokens;
routingData.mNumExperts = numExperts;
routingData.mTopK = topK;
routingData.mPaddingLog2 = computeLog2(mTileTokensDim);
routingData.mTileTokensDim = mTileTokensDim;
routingData.mLocalExpertsStartIdx = localExpertOffset;
routingData.mLocalExpertsStrideLog2 = 0;
routingData.mNumLocalExperts = localNumExperts;
moe::dev::routing::routingRenormalize::run(routingData, stream);
}
else
{
TLLM_CHECK_WITH_INFO(false, "Unimplemented routing method %s of enum %d",
serializeMoeRoutingMethodType(routingMethodType).c_str(), (int) routingMethodType);
}
}
} // namespace Routing
namespace PermuteGemm1
{
tensorrt_llm::kernels::TrtllmGenBatchedGemmRunnerOptions getOptions(
btg::Dtype dtypeAct, btg::Dtype dtypeWeights, int32_t tileTokensDim, bool useDeepSeekFp8, ActType actType)
{
tensorrt_llm::kernels::TrtllmGenBatchedGemmRunnerOptions options
= {// Swap A and B dtypes because transposeMmaOutput is hardcoded to true
.dtypeA = dtypeWeights,
.dtypeB = dtypeAct,
.dtypeC = dtypeAct,
.actType = actType,
.deepSeekFp8 = useDeepSeekFp8,
.fusedAct = !useDeepSeekFp8,
.routeAct = true,
.staticBatch = false,
.transposeMmaOutput = true,
.tileSize = tileTokensDim,
.epilogueTileM = useDeepSeekFp8 ? 64 : 128};
return options;
}
Runner::Runner(btg::Dtype dtypeAct, btg::Dtype dtypeWeights, bool useDeepSeekFp8, int tileTokensDim, ActType actType)
: mDtypeAct(dtypeAct)
, mDtypeWeights(dtypeWeights)
, mTileTokensDim(tileTokensDim)
, mRunner(tensorrt_llm::kernels::TrtllmGenBatchedGemmRunner(
getOptions(mDtypeAct, mDtypeWeights, mTileTokensDim, useDeepSeekFp8, actType)))
{
}
void Runner::run(void* hiddenState, void* hiddenStateScale, void* weights, void* weightsScale, void* expertWeights,
float* outputScalesScalar, float* outputScalesGateScalar, float* ptrBias, float* ptrAlpha, float* ptrBeta,
float* ptrClampLimit, void* output, void* outputScale, int32_t topK, int32_t hiddenSize, int32_t intermediateSize,
int32_t numExperts, int32_t numTokens, int32_t* permutedIdxToTokenIdx, int32_t* ptrNumNonExitingCtas,
int32_t* ptrTotalNumPaddedTokens, int32_t* ptrCtaIdxXyToBatchIdx, int32_t* ptrCtaIdxXyToMnLimit,
void* bmm1Workspace, bool useRoutingScalesOnInput, int device, cudaStream_t stream, int32_t configIndex)
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
mRunner.run(numTokens, 2 * intermediateSize, hiddenSize, {}, numTokens, numExperts, maxNumCtasInBatchDim,
hiddenState, hiddenStateScale, weights, weightsScale, expertWeights, /* perTokensSfB */ nullptr,
outputScalesScalar, outputScalesGateScalar, ptrBias, ptrAlpha, ptrBeta, ptrClampLimit, output, outputScale,
permutedIdxToTokenIdx, ptrTotalNumPaddedTokens, ptrCtaIdxXyToBatchIdx, ptrCtaIdxXyToMnLimit,
ptrNumNonExitingCtas, bmm1Workspace, stream, device, configIndex);
}
size_t Runner::getWorkspaceSizeInBytes(int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts,
int32_t numTokens, int32_t configIndex) const
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
return mRunner.getWorkspaceSizeInBytes(
numTokens, 2 * intermediateSize, hiddenSize, {}, numTokens, numExperts, maxNumCtasInBatchDim, configIndex);
}
int32_t Runner::getDefaultValidConfigIndex(
int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens) const
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
return mRunner.getDefaultValidConfigIndex(
numTokens, 2 * intermediateSize, hiddenSize, {}, numTokens, numExperts, maxNumCtasInBatchDim);
}
bool Runner::isValidConfigIndex(int32_t configIndex, int32_t topK, int32_t hiddenSize, int32_t intermediateSize,
int32_t numExperts, int32_t numTokens) const
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
auto const isValid = mRunner.isValidConfigIndex(
configIndex, numTokens, 2 * intermediateSize, hiddenSize, {}, numTokens, numExperts, maxNumCtasInBatchDim);
return isValid;
}
std::vector<int64_t> Runner::getPassingConfigIndices() const
{
return mRunner.getPassingConfigIndices();
}
} // namespace PermuteGemm1
namespace Gemm2
{
tensorrt_llm::kernels::TrtllmGenBatchedGemmRunnerOptions getOptions(
btg::Dtype dtypeAct, btg::Dtype dtypeWeights, btg::Dtype dtypeOut, int32_t tileTokensDim, bool useDeepSeekFp8)
{
tensorrt_llm::kernels::TrtllmGenBatchedGemmRunnerOptions options
= {// Swap A and B dtypes because transposeMmaOutput is hardcoded to true
.dtypeA = dtypeWeights,
.dtypeB = dtypeAct,
.dtypeC = dtypeOut,
.deepSeekFp8 = useDeepSeekFp8,
.fusedAct = false,
.routeAct = false,
.staticBatch = false,
.transposeMmaOutput = true,
.tileSize = tileTokensDim,
.epilogueTileM = useDeepSeekFp8 ? 64 : 128};
return options;
}
Runner::Runner(
btg::Dtype dtypeAct, btg::Dtype dtypeWeights, btg::Dtype dtypeOut, bool useDeepSeekFp8, int tileTokensDim)
: mDtypeAct(dtypeAct)
, mDtypeWeights(dtypeWeights)
, mDtypeOut(dtypeOut)
, mTileTokensDim(tileTokensDim)
, mRunner(tensorrt_llm::kernels::TrtllmGenBatchedGemmRunner(
getOptions(dtypeAct, dtypeWeights, dtypeOut, tileTokensDim, useDeepSeekFp8)))
{
}
void Runner::run(void* permutedHiddenState, void* permutedHiddenStateScale, void* weights, void* weightsScale,
float* outputScalesScalar, float* ptrBias, void* output, void* outputScale, int32_t topK, int32_t hiddenSize,
int32_t intermediateSize, int32_t numExperts, int32_t numTokens, int32_t* ptrNumNonExitingCtas,
int32_t* ptrTotalNumPaddedTokens, int32_t* ptrCtaIdxXyToBatchIdx, int32_t* ptrCtaIdxXyToMnLimit,
void* bmm2Workspace, int device, cudaStream_t stream, int32_t configIndex)
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
mRunner.run(numTokens, hiddenSize, intermediateSize, {}, numTokens, numExperts, maxNumCtasInBatchDim,
permutedHiddenState, permutedHiddenStateScale, weights, weightsScale, /* perTokensSfA */ nullptr,
/* perTokensSfB */ nullptr, outputScalesScalar, /* outputScalesGateScalar */ nullptr, ptrBias,
/* ptrAlpha */ nullptr, /* ptrBeta */ nullptr, /* clampLimit */ nullptr, output, outputScale,
/* permutedIdxToTokenIdx */ nullptr, ptrTotalNumPaddedTokens, ptrCtaIdxXyToBatchIdx, ptrCtaIdxXyToMnLimit,
ptrNumNonExitingCtas, bmm2Workspace, stream, device, configIndex);
}
size_t Runner::getWorkspaceSizeInBytes(int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts,
int32_t numTokens, int32_t configIndex) const
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
return mRunner.getWorkspaceSizeInBytes(
numTokens, hiddenSize, intermediateSize, {}, numTokens, numExperts, maxNumCtasInBatchDim, configIndex);
}
int32_t Runner::getDefaultValidConfigIndex(
int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens) const
{
auto maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
return mRunner.getDefaultValidConfigIndex(
numTokens, hiddenSize, intermediateSize, {}, numTokens, numExperts, maxNumCtasInBatchDim);
}
bool Runner::isValidConfigIndex(int32_t configIndex, int32_t topK, int32_t hiddenSize, int32_t intermediateSize,
int32_t numExperts, int32_t numTokens) const
{
auto const maxNumCtasInBatchDim = Routing::getMaxNumCtasInBatchDim(numTokens, topK, numExperts, mTileTokensDim);
auto const isValid = mRunner.isValidConfigIndex(
configIndex, numTokens, hiddenSize, intermediateSize, {}, numTokens, numExperts, maxNumCtasInBatchDim);
return isValid;
}
std::vector<int64_t> Runner::getPassingConfigIndices() const
{
return mRunner.getPassingConfigIndices();
}
} // namespace Gemm2
namespace MoE
{
Runner::Runner(
btg::Dtype dtypeAct, btg::Dtype dtypeWeights, bool useDeepSeekFp8, int32_t tileTokensDim, ActType actType)
: mPermuteGemm1(PermuteGemm1::Runner(dtypeAct, dtypeWeights, useDeepSeekFp8, tileTokensDim, actType))
, mGemm2(Gemm2::Runner(dtypeAct, dtypeWeights, btg::Dtype::Bfloat16, useDeepSeekFp8, tileTokensDim))
{
auto const& gemm1PassingIndices = mPermuteGemm1.getPassingConfigIndices();
auto const& gemm2PassingIndices = mGemm2.getPassingConfigIndices();
auto const totalPassingIndices = gemm1PassingIndices.size() * gemm2PassingIndices.size();
mPassingConfigs.reserve(totalPassingIndices);
for (auto const& indexGemm1 : gemm1PassingIndices)
{
for (auto const& indexGemm2 : gemm2PassingIndices)
{
mPassingConfigs.push_back(MoEConfig{indexGemm1, indexGemm2});
}
}
TLLM_CHECK_WITH_INFO(!mPassingConfigs.empty(), "No compatible configs found for the fp8 block scale MoE runner.");
}
Runner::Runner(btg::Dtype dtypeElt, bool useDeepSeekFp8, int32_t tileTokensDim)
: Runner(dtypeElt, dtypeElt, useDeepSeekFp8, tileTokensDim)
{
}
void Runner::setOpsData(MoERunnerArgs const& args, MoEWorkspace const& workspace,
moe::dev::convertsf::Data& convertSfData, moe::dev::activation::Data& activationData,
moe::dev::finalize::Data& finalizeData)
{
// Setup sf conversion data if needed
convertSfData.inSfPtr = args.hidden_states_scale;
convertSfData.outSfPtr = workspace.hidden_states_scale_linear;
convertSfData.hiddenDimSf = args.hidden_size / 16;
convertSfData.numTokens = args.num_tokens;
convertSfData.sfLayoutSrc = btg::SfLayout::R128c4;
convertSfData.sfLayoutDst = btg::SfLayout::Linear;
convertSfData.mUsePdl = true;
// Setup activation data
activationData.mDtypeElt = args.mDtypeElt;
activationData.mUsePdl = true;
activationData.mUseDeepSeekFp8 = true;
activationData.inPtr = workspace.gemm1_output;
activationData.outPtr = workspace.activation_output;
activationData.inDqSfsPtr = workspace.gemm1_output_scale;
activationData.outDqSfsPtr = workspace.activation_output_scale;
activationData.innerDim = args.intermediate_size * 2;
activationData.topK = args.top_k;
activationData.numTokens = args.num_tokens;
activationData.expandedIdxToPermutedIdx = workspace.expanded_idx_to_permuted_idx;
activationData.totalNumPaddedTokens = workspace.total_num_padded_tokens;
if (args.do_finalize)
{
// Setup finalize data
finalizeData.mDtypeElt = args.mDtypeOut;
finalizeData.mDtypeExpW = args.mDtypeExpW;
finalizeData.mUsePdl = true;
finalizeData.mUseDeepSeekFp8 = false;
finalizeData.inPtr = workspace.gemm2_output;
finalizeData.outPtr = args.output;
finalizeData.inDqSfsPtr = workspace.gemm2_output_scale;
finalizeData.outDqSfsPtr = args.output_scale;
if (args.mUseRoutingScalesOnInput)
{
finalizeData.expertWeightsPtr = nullptr;
}
else
{
finalizeData.expertWeightsPtr = workspace.expert_weights;
}
finalizeData.expandedIdxToPermutedIdx = workspace.expanded_idx_to_permuted_idx;
finalizeData.numTokens = args.num_tokens;
finalizeData.numExperts = args.num_experts;
finalizeData.topK = args.top_k;
// We want to fuse unpadding into the finalize kernel, so we need to use the output hidden size.
finalizeData.hiddenDim = args.hidden_size_output.value_or(args.hidden_size);
finalizeData.hiddenDimPadded = args.hidden_size;
finalizeData.totalNumPaddedTokens = workspace.total_num_padded_tokens;
}
}
std::tuple<int32_t, int32_t> Runner::getWorkspaceSizeInBytes(MoERunnerArgs const& args, int64_t configIndex) const
{
auto const& config = mPassingConfigs[configIndex];
auto workspace_size_fc1 = static_cast<int32_t>(mPermuteGemm1.getWorkspaceSizeInBytes(args.top_k, args.hidden_size,
args.intermediate_size, args.local_num_experts, args.num_tokens, config.gemm1Config));
auto workspace_size_fc2 = static_cast<int32_t>(mGemm2.getWorkspaceSizeInBytes(args.top_k, args.hidden_size,
args.intermediate_size, args.local_num_experts, args.num_tokens, config.gemm2Config));
return std::make_tuple(workspace_size_fc1, workspace_size_fc2);
}
std::vector<int64_t> Runner::getValidConfigIndices(
int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numLocalExperts, int32_t numTokens) const
{
std::vector<int64_t> validIndices;
for (int i = 0; i < mPassingConfigs.size(); ++i)
{
auto const& config = mPassingConfigs[i];
if (mPermuteGemm1.isValidConfigIndex(
config.gemm1Config, topK, hiddenSize, intermediateSize, numLocalExperts, numTokens)
&& mGemm2.isValidConfigIndex(
config.gemm2Config, topK, hiddenSize, intermediateSize, numLocalExperts, numTokens))
{
validIndices.push_back(i);
}
}
return validIndices;
}
int64_t Runner::getDefaultValidConfigIndex(
int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numLocalExperts, int32_t numTokens) const
{
int32_t indexGemm1
= mPermuteGemm1.getDefaultValidConfigIndex(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens);
int32_t indexGemm2
= mGemm2.getDefaultValidConfigIndex(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens);
auto it = std::find_if(mPassingConfigs.begin(), mPassingConfigs.end(),
[indexGemm1, indexGemm2](MoEConfig cfg)
{ return (cfg.gemm1Config == indexGemm1 && cfg.gemm2Config == indexGemm2); });
TLLM_CHECK_WITH_INFO(it != mPassingConfigs.end(), "No compatible configs found for the block scale MoE runner.");
return std::distance(mPassingConfigs.begin(), it);
}
void Runner::run(
MoERunnerArgs const& args, MoEWorkspace const& workspace, int device, cudaStream_t stream, int64_t configIndex)
{
// Setup all operation data
moe::dev::activation::Data activationData;
moe::dev::finalize::Data finalizeData;
moe::dev::convertsf::Data convertSfData;
sync_check_cuda_error(stream);
setOpsData(args, workspace, convertSfData, activationData, finalizeData);
void* hidden_states_scale_linear{args.hidden_states_scale};
auto const& config = mPassingConfigs[configIndex];
mPermuteGemm1.run(args.hidden_states, hidden_states_scale_linear, args.gemm1_weights, args.gemm1_weights_scale,
workspace.expert_weights, args.output1_scales_scalar, args.output1_scales_gate_scalar, args.gemm1_bias,
args.gemm1_alpha, args.gemm1_beta, args.gemm1_clamp_limit, workspace.gemm1_output, workspace.gemm1_output_scale,
args.top_k, args.hidden_size, args.intermediate_size, args.local_num_experts, args.num_tokens,
workspace.permuted_idx_to_token_idx, workspace.num_non_exiting_ctas, workspace.total_num_padded_tokens,
workspace.cta_idx_xy_to_batch_idx, workspace.cta_idx_xy_to_mn_limit, workspace.bmm1_workspace,
args.mUseRoutingScalesOnInput, device, stream, config.gemm1Config);
// We do not fuse activation with FC1 for DeepSeek FP8 due to the weights shuffling constraint.
void* gemm2_input = workspace.gemm1_output;
void* gemm2_input_scale = workspace.gemm1_output_scale;
// We do activation only for DeepSeek FP8, as cubins do not have fused activation.
if (args.mDtypeElt == btg::Dtype::E4m3 && args.mUseDeepSeekFp8)
{
// Run activation
moe::dev::activation::run(activationData, stream);
gemm2_input = workspace.activation_output;
gemm2_input_scale = workspace.activation_output_scale;
}
// Run gemm2
mGemm2.run(gemm2_input, gemm2_input_scale, args.gemm2_weights, args.gemm2_weights_scale, args.output2_scales_scalar,
args.gemm2_bias, workspace.gemm2_output, workspace.gemm2_output_scale, args.top_k, args.hidden_size,
args.intermediate_size, args.local_num_experts, args.num_tokens, workspace.num_non_exiting_ctas,
workspace.total_num_padded_tokens, workspace.cta_idx_xy_to_batch_idx, workspace.cta_idx_xy_to_mn_limit,
workspace.bmm2_workspace, device, stream, config.gemm2Config);
// Run finalize
if (args.do_finalize)
{
// Run finalize
moe::dev::finalize::run(finalizeData, stream);
sync_check_cuda_error(stream);
}
}
} // namespace MoE
} // namespace trtllmGenFp8BlockScaleMoe
} // namespace kernels
} // namespace tensorrt_llm