TensorRT-LLMs/examples/models/contrib/baichuan/convert_checkpoint.py
Guoming Zhang 202bed4574 [None][chroe] Rename TensorRT-LLM to TensorRT LLM for source code. (#7851)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-25 21:02:35 +08:00

262 lines
9.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import tensorrt_llm
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.baichuan.config import BaichuanConfig
from tensorrt_llm.models.baichuan.convert import load_weights_from_gptq
from tensorrt_llm.models.baichuan.model import BaichuanForCausalLM
from tensorrt_llm.models.modeling_utils import QuantConfig
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--quant_ckpt_path', type=str, default=None)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--pp_size', type=int, default=1)
parser.add_argument('--model_version',
type=str,
default='v1_13b',
choices=['v1_7b', 'v1_13b', 'v2_7b', 'v2_13b'])
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['auto', 'float16', 'bfloat16', 'float32'],
help=
"The data type for the model weights and activations if not quantized. "
"If 'auto', the data type is automatically inferred from the source model; "
"however, if the source dtype is float32, it is converted to float16.")
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--calib_dataset',
type=str,
default='ccdv/cnn_dailymail',
help=
"The huggingface dataset name or the local directory of the dataset for calibration."
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--group_size',
type=int,
default=128,
help='Group size used in GPTQ/AWQ quantization.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
args = parser.parse_args()
return args
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
config = QuantConfig(group_size=args.group_size)
if args.smoothquant:
config.smoothquant_val = args.smoothquant
if args.per_token and args.per_channel:
config.quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
elif not args.per_token and not args.per_channel:
config.quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
elif not args.per_token and args.per_channel:
config.quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
elif args.per_token and not args.per_channel:
config.quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
else:
if args.use_weight_only and args.weight_only_precision == 'int8':
config.quant_algo = QuantAlgo.W8A16
elif args.use_weight_only and args.weight_only_precision == 'int4':
config.quant_algo = QuantAlgo.W4A16
elif args.use_weight_only and args.weight_only_precision == 'int4_gptq':
config.quant_algo = QuantAlgo.W4A16_GPTQ
if args.int8_kv_cache:
config.kv_cache_quant_algo = QuantAlgo.INT8
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
config.has_zero_point = True
return config
def convert_and_save_hf(args):
world_size = args.tp_size * args.pp_size
quantization_config = args_to_quant_config(args)
if args.smoothquant is not None or args.int8_kv_cache:
mapping = Mapping(
world_size=world_size,
tp_size=args.tp_size,
pp_size=args.pp_size,
)
BaichuanForCausalLM.quantize(
args.model_dir,
args.output_dir,
dtype=args.dtype,
mapping=mapping,
quant_config=quantization_config,
calib_dataset=args.calib_dataset,
model_version=args.model_version,
)
else:
def convert_and_save_rank(args, rank):
mapping = Mapping(
world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size,
)
model = BaichuanForCausalLM.from_hugging_face(
args.model_dir,
dtype=args.dtype,
mapping=mapping,
quant_config=quantization_config,
model_version=args.model_version,
logits_dtype=args.logits_dtype,
)
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
del model
execute(args.workers, [convert_and_save_rank] * world_size, args)
def convert_and_save_gptq(args, rank):
mapping = Mapping(world_size=args.tp_size * args.pp_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
config = BaichuanConfig.from_hugging_face(
args.model_dir,
dtype=args.dtype,
mapping=mapping,
quant_config=args_to_quant_config(args),
model_version=args.model_version,
logits_dtype=args.logits_dtype)
config.vocab_size = int((config.vocab_size + 63) / 64) * 64
model = BaichuanForCausalLM(config)
weights = load_weights_from_gptq(config, args.quant_ckpt_path)
model.load(weights)
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
assert args.model_dir is not None
assert args.quant_ckpt_path is not None
execute(args.workers, [convert_and_save_gptq] * world_size, args)
else:
assert args.model_dir is not None
assert args.quant_ckpt_path is None, "only gptq weights only needs this option"
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()