TensorRT-LLMs/examples/models/contrib/stdit/convert_checkpoint.py
Guoming Zhang 202bed4574 [None][chroe] Rename TensorRT-LLM to TensorRT LLM for source code. (#7851)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-25 21:02:35 +08:00

251 lines
9.3 KiB
Python

import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from vae import get_vae
import tensorrt_llm
from tensorrt_llm._utils import release_gc
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import STDiT3Model
PRETRAINED_STDIT_PATH = "hpcai-tech/OpenSora-STDiT-v3"
def pixel_size_to_latent_size(args):
vae = get_vae(
from_pretrained=args.vae_type,
micro_frame_size=args.vae_micro_frame_size,
micro_batch_size=args.vae_micro_batch_size,
).eval()
spatial_patch_size = vae.spatial_vae.patch_size
temporal_patch_size = vae.temporal_vae.patch_size
vae_out_channels = vae.out_channels
pixel_size = (args.num_frames, args.height, args.width)
latent_size = vae.get_latent_size(pixel_size)
return {
'in_channels': vae_out_channels,
'latent_size': latent_size,
'spatial_patch_size': spatial_patch_size,
'temporal_patch_size': temporal_patch_size,
}
def size_str_to_list(repr):
return [int(it) for it in repr.split('x')] if 'x' in repr else [int(repr)]
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--timm_ckpt', type=str, default=None)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT LLM checkpoint')
parser.add_argument('--caption_channels',
type=int,
default=4096,
help='The channel of input of caption embedder')
parser.add_argument('--depth',
type=int,
default=28,
help='The number of STDiT blocks')
parser.add_argument('--input_sq_size',
type=int,
default=512,
help='Base spatial position embedding size')
parser.add_argument('--stdit_type',
type=str,
default="STDiT3",
choices=["STDiT3"])
parser.add_argument('--stdit_patch_size',
type=str,
default='1x2x2',
help='The patch size of stdit for patchify')
parser.add_argument('--width',
type=int,
default=640,
help='The width of image size')
parser.add_argument('--height',
type=int,
default=360,
help='The height of image size')
parser.add_argument('--num_frames',
type=int,
default=102,
help='The frames of generated video')
parser.add_argument('--vae_type',
type=str,
default="hpcai-tech/OpenSora-VAE-v1.2",
choices=["hpcai-tech/OpenSora-VAE-v1.2"])
parser.add_argument('--vae_micro_frame_size',
type=int,
default=17,
help='The micro_frame_size for vae')
parser.add_argument('--vae_micro_batch_size',
type=int,
default=4,
help='The micro_batch_size for vae')
parser.add_argument('--hidden_size',
type=int,
default=1152,
help='The hidden size of STDiT')
parser.add_argument('--num_heads',
type=int,
default=16,
help='The number of heads of attention module')
parser.add_argument(
'--mlp_ratio',
type=float,
default=4.0,
help=
'The ratio of hidden size compared to input hidden size in MLP layer')
parser.add_argument(
'--class_dropout_prob',
type=float,
default=0.1,
help='The probability to drop class token when training')
parser.add_argument('--model_max_length',
type=int,
default=300,
help='The max number of tokens (default: 300)')
parser.add_argument('--text_encoder_type',
type=str,
default="DeepFloyd/t5-v1_1-xxl",
choices=["DeepFloyd/t5-v1_1-xxl"])
parser.add_argument('--learn_sigma',
type=bool,
default=True,
help='Whether the model learn sigma')
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--cp_size',
type=int,
default=1,
help='Context parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--disable_qk_norm',
action='store_true',
help='Disable norm for qk in attention')
parser.add_argument('--fp8',
action='store_true',
help='Whether use FP8 for layers')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument('--log_level', type=str, default='info')
args = parser.parse_args()
return args
def convert_and_save_model(args):
# [NOTE] PP is not supported yet.
world_size = args.tp_size * args.cp_size
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
cp_size=args.cp_size)
# Process args
runtime_config = {
'architecture': "STDiT3",
'checkpoint_path': os.path.abspath(args.timm_ckpt),
'caption_channels': args.caption_channels,
'num_hidden_layers': args.depth,
'width': args.width,
'height': args.height,
'num_frames': args.num_frames,
'hidden_size': args.hidden_size,
'stdit_patch_size': size_str_to_list(args.stdit_patch_size),
'input_sq_size': args.input_sq_size,
'num_attention_heads': args.num_heads,
'model_max_length': args.model_max_length,
'mlp_ratio': args.mlp_ratio,
'class_dropout_prob': args.class_dropout_prob,
'learn_sigma': args.learn_sigma,
'qk_norm': (not args.disable_qk_norm),
'stdit_type': args.stdit_type,
'vae_type': args.vae_type,
'text_encoder_type': args.text_encoder_type,
}
runtime_config.update(pixel_size_to_latent_size(args))
tik = time.time()
stdit = STDiT3Model.from_pretrained(os.path.dirname(args.timm_ckpt),
args.dtype,
mapping=mapping,
**runtime_config)
stdit.save_checkpoint(args.output_dir, save_config=True)
print(f'Total time of reading and converting: {time.time()-tik:.3f} s')
tik = time.time()
del stdit
print(f'Total time of saving checkpoint: {time.time()-tik:.3f} s')
execute(args.workers, [convert_and_save_rank] * world_size, args)
release_gc()
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
logger.set_level(args.log_level)
assert args.pp_size == 1, "PP is not supported yet."
tik = time.time()
if args.timm_ckpt is None:
print(
f"No pretrained checkpoint provided, use default checkpoint from Huggingface instead."
)
args.timm_ckpt = "./pretrained_ckpt/model.safetensors"
if not os.path.exists(args.timm_ckpt):
from huggingface_hub import snapshot_download
snapshot_download(repo_id=PRETRAINED_STDIT_PATH,
local_dir=os.path.dirname(args.timm_ckpt))
convert_and_save_model(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()