mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-09 20:43:50 +08:00
Some tunable ops require a more realistic data distribution, for instance, a shape-associated tensor. Thus, a customizable pre-hook function can be declared in the tuning config to modify the input tensor before the tuning process. Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
395 lines
14 KiB
Python
395 lines
14 KiB
Python
import os
|
|
import tempfile
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
|
|
import tensorrt_llm._torch.autotuner as autotuner
|
|
from tensorrt_llm._torch.autotuner import (AutoTuner, DynamicDim,
|
|
DynamicTensorSpec, FakeTensor,
|
|
OptimizationProfile, StaticDim,
|
|
TunableRunner, TuningConfig,
|
|
autotune)
|
|
from tensorrt_llm._torch.utils import (get_power_of_2_num_tokens_buckets,
|
|
next_positive_power_of_2)
|
|
from tensorrt_llm.bindings.internal.runtime import delay_kernel
|
|
from tensorrt_llm.logger import logger
|
|
|
|
|
|
def test_multi_dynamic_dims():
|
|
tuner = autotuner.AutoTuner()
|
|
x = torch.rand([5, 1024])
|
|
w = torch.rand([7, 19])
|
|
dynamic_tensor_specs = (
|
|
DynamicTensorSpec(0, 0, [1, 3, 5]),
|
|
DynamicTensorSpec(0, 1, [16, 24, 1024]),
|
|
DynamicTensorSpec(1, 1, [3, 7, 9], lambda x: x // 2),
|
|
)
|
|
|
|
profiles = tuner._optimization_profiles(
|
|
tuning_config=TuningConfig(dynamic_tensor_specs=dynamic_tensor_specs),
|
|
inputs=[x, w])
|
|
# choice(0, 0) * choice(0, 1) * choice(1, 1)
|
|
# 3 * 3 * 3 = 27, because 19 is mapped to 9 and already inside the bucket
|
|
assert len(profiles) == 27
|
|
sample_0 = OptimizationProfile(shapes=[[
|
|
DynamicDim(min=1, opt=1, max=3),
|
|
DynamicDim(min=16, opt=16, max=24)
|
|
], [StaticDim(val=7), DynamicDim(min=3, opt=3, max=7)]])
|
|
sample_26 = OptimizationProfile(shapes=[[
|
|
DynamicDim(min=5, opt=5, max=float('inf')),
|
|
DynamicDim(min=1024, opt=1024, max=float('inf'))
|
|
], [StaticDim(
|
|
val=7), DynamicDim(min=9, opt=9, max=float('inf'))]])
|
|
|
|
assert sample_0 == profiles[0]
|
|
assert sample_26 == profiles[-1]
|
|
|
|
|
|
# For cache testing
|
|
"""
|
|
tactic 0 is better when x.shape[0] <= M // 2
|
|
tactic 1 is better when x.shape[0] > M // 2
|
|
"""
|
|
M = 32
|
|
|
|
|
|
# add sleep to simulate bad perf
|
|
def gemm_0(x, w):
|
|
if x.shape[0] > M // 2:
|
|
delay_kernel(10000, torch.cuda.current_stream())
|
|
return x @ w
|
|
|
|
|
|
def gemm_1(x, w):
|
|
if x.shape[0] <= M // 2:
|
|
delay_kernel(10000, torch.cuda.current_stream())
|
|
return x @ w
|
|
|
|
|
|
def gemm_fallback(x, w) -> torch.Tensor:
|
|
# always the slowest
|
|
delay_kernel(100000, torch.cuda.current_stream())
|
|
return x @ w
|
|
|
|
|
|
def check_gemm_tactic_valid(tactic: int, m: int) -> bool:
|
|
# TODO: CI is not stable for this test. delay_kernel can not guarantee the profiling result.
|
|
# We need to find a more determinist way to test this.
|
|
if m <= M // 2:
|
|
if tactic != 0:
|
|
logger.warning(
|
|
f"Expect tactic 0 but got {tactic} when m ({m}) is small.")
|
|
elif m <= M:
|
|
if tactic != 1:
|
|
logger.warning(
|
|
f"Expect tactic 1 but got {tactic} when m ({m}) is large.")
|
|
else:
|
|
if tactic != -1:
|
|
logger.warning(
|
|
f"Expect fallback tactic (-1) but got {tactic} when m ({m}) > {M}."
|
|
)
|
|
|
|
|
|
class GemmRunner(TunableRunner):
|
|
|
|
def get_valid_tactics(self, inputs: List[FakeTensor],
|
|
profile: OptimizationProfile, **kwargs) -> List[int]:
|
|
# The simulated delay is not deterministic, so we need to return specific tactics here
|
|
return [-1, 0, 1]
|
|
|
|
def forward(self,
|
|
/,
|
|
inputs: List[torch.Tensor],
|
|
*,
|
|
tactic: int = -1,
|
|
**kwargs) -> torch.Tensor:
|
|
assert tactic in [-1, 0, 1]
|
|
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
|
|
|
|
|
|
@torch.library.custom_op("autotuner_test::get_best_gemm_tactic",
|
|
mutates_args=())
|
|
def get_best_gemm_tactic(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
|
|
runners = [GemmRunner()]
|
|
tunner = AutoTuner.get()
|
|
tuning_config = TuningConfig(dynamic_tensor_specs=(DynamicTensorSpec(
|
|
input_idx=0,
|
|
dim_idx=0,
|
|
gen_tuning_buckets=get_power_of_2_num_tokens_buckets,
|
|
map_to_tuning_buckets=next_positive_power_of_2), ), )
|
|
runner, tactic = tunner.choose_one(
|
|
"autotuner_test::get_best_gemm_tactic",
|
|
runners,
|
|
tuning_config,
|
|
[x, w],
|
|
)
|
|
return torch.tensor(tactic)
|
|
|
|
|
|
@get_best_gemm_tactic.register_fake
|
|
def _(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
|
|
return torch.empty(1)
|
|
|
|
|
|
def test_autotuner_cache_basic():
|
|
w = torch.randn(64, 128)
|
|
|
|
# tuning with largest M
|
|
AutoTuner.get().clear_cache()
|
|
with autotune():
|
|
torch.ops.autotuner_test.get_best_gemm_tactic(torch.randn(M, 64), w)
|
|
|
|
m = M * 2
|
|
while m >= 1:
|
|
best_tactic = torch.ops.autotuner_test.get_best_gemm_tactic(
|
|
torch.randn(m, 64), w)
|
|
check_gemm_tactic_valid(best_tactic, m)
|
|
m //= 2
|
|
|
|
|
|
def test_autotuner_try_block():
|
|
|
|
class PartialCrashedRunner(TunableRunner):
|
|
|
|
def get_valid_tactics(self, inputs: List[FakeTensor],
|
|
profile: OptimizationProfile,
|
|
**kwargs) -> List[int]:
|
|
return [-1, 0, 1]
|
|
|
|
def forward(self,
|
|
/,
|
|
inputs: List[torch.Tensor],
|
|
*,
|
|
tactic: int = -1) -> torch.Tensor:
|
|
assert tactic in [-1, 0, 1]
|
|
if tactic == 1:
|
|
raise Exception(
|
|
"For profiling try block test: Tactic 1 is not suitable. Crash happens."
|
|
)
|
|
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
|
|
|
|
x, w = torch.randn(M, 64), torch.randn(64, 128)
|
|
runners = [PartialCrashedRunner()]
|
|
tunner = AutoTuner.get()
|
|
tuning_config = TuningConfig(dynamic_tensor_specs=(DynamicTensorSpec(
|
|
input_idx=0,
|
|
dim_idx=0,
|
|
gen_tuning_buckets=get_power_of_2_num_tokens_buckets,
|
|
map_to_tuning_buckets=next_positive_power_of_2), ), )
|
|
with autotune():
|
|
runner, tactic = tunner.choose_one("test_autotuner_try_block", runners,
|
|
tuning_config, [x, w])
|
|
|
|
m = M // 2
|
|
while m >= 1:
|
|
_, tactic = tunner.choose_one("test_autotuner_try_block", runners,
|
|
tuning_config, [torch.randn(m, 64), w])
|
|
assert tactic in [
|
|
-1, 0
|
|
], f"Expect only tactic -1, 0 being chosen, but got tactic {tactic}."
|
|
m //= 2
|
|
|
|
|
|
@torch.library.custom_op("autotuner_test::recursive_get_best_gemm_tactic",
|
|
mutates_args=())
|
|
def recursive_get_best_gemm_tactic(x: torch.Tensor, w1: torch.Tensor,
|
|
w2: torch.Tensor) -> torch.Tensor:
|
|
# Only the first custom_op is tuned, the second one uses the tuned result in cache
|
|
tactic_1 = get_best_gemm_tactic(x, w1)
|
|
tactic_2 = get_best_gemm_tactic(x, w2)
|
|
return torch.stack([tactic_1, tactic_2])
|
|
|
|
|
|
@recursive_get_best_gemm_tactic.register_fake
|
|
def _(x: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor) -> torch.Tensor:
|
|
return torch.empty(2)
|
|
|
|
|
|
def test_recursive_autotuner():
|
|
x, w1, w2 = torch.randn(M, 64), torch.randn(64, 128), torch.randn(64, 128)
|
|
AutoTuner.get().clear_cache()
|
|
with autotune():
|
|
torch.ops.autotuner_test.recursive_get_best_gemm_tactic(
|
|
torch.randn(M, 64), w1, w2)
|
|
|
|
m = M * 2
|
|
while m >= 1:
|
|
t1, t2 = torch.ops.autotuner_test.recursive_get_best_gemm_tactic(
|
|
torch.randn(m, 64), w1, w2)
|
|
check_gemm_tactic_valid(t1, m)
|
|
check_gemm_tactic_valid(t2, m)
|
|
m //= 2
|
|
|
|
|
|
class GemmRunnerWithAttributes(TunableRunner):
|
|
|
|
def __init__(self, block_size: int, num_warps: int):
|
|
self.block_size = block_size
|
|
self.num_warps = num_warps
|
|
|
|
def get_valid_tactics(self, inputs: List[FakeTensor],
|
|
profile: OptimizationProfile, **kwargs) -> List[int]:
|
|
return [-1, 0, 1]
|
|
|
|
def forward(self,
|
|
/,
|
|
inputs: List[torch.Tensor],
|
|
*,
|
|
tactic: int = -1) -> torch.Tensor:
|
|
assert tactic in [-1, 0, 1]
|
|
return [gemm_0, gemm_1, gemm_fallback][tactic](*inputs)
|
|
|
|
|
|
def test_multiple_runners_different_attributes():
|
|
"""Test that runners with different attributes get different cache entries"""
|
|
x, w = torch.randn(16, 64), torch.randn(64, 128)
|
|
|
|
# Create runners with different attributes
|
|
runner_0 = GemmRunnerWithAttributes(block_size=128, num_warps=4)
|
|
runner_1 = GemmRunnerWithAttributes(block_size=256, num_warps=8)
|
|
runners = [runner_0, runner_1]
|
|
|
|
tuning_config = TuningConfig(dynamic_tensor_specs=(DynamicTensorSpec(
|
|
input_idx=0,
|
|
dim_idx=0,
|
|
gen_tuning_buckets=get_power_of_2_num_tokens_buckets,
|
|
map_to_tuning_buckets=next_positive_power_of_2), ), )
|
|
|
|
# Do tuning
|
|
with autotune():
|
|
tuner = AutoTuner.get()
|
|
runner_a, tactic_a = tuner.choose_one("test_multiple_runners", runners,
|
|
tuning_config, [x, w])
|
|
|
|
# Verify different cache keys are generated
|
|
shapes = (x.shape, w.shape)
|
|
cache_key_0 = tuner.profiling_cache.get_cache_key(
|
|
custom_op="test_multiple_runners",
|
|
input_shapes=shapes,
|
|
runner=runner_0,
|
|
tuning_config=tuning_config,
|
|
)
|
|
cache_key_1 = tuner.profiling_cache.get_cache_key(
|
|
custom_op="test_multiple_runners",
|
|
input_shapes=shapes,
|
|
runner=runner_1,
|
|
tuning_config=tuning_config,
|
|
)
|
|
|
|
assert cache_key_0 != cache_key_1, "Runners with different attributes should have different cache keys"
|
|
|
|
|
|
def test_multiple_dynamic_shapes_cache():
|
|
"""Test that different dynamic shape combinations are properly cached"""
|
|
w = torch.randn(64, 128)
|
|
runners = [GemmRunner()]
|
|
|
|
# Define dynamic ranges for both dimensions
|
|
tuning_config = TuningConfig(dynamic_tensor_specs=(
|
|
DynamicTensorSpec(input_idx=0,
|
|
dim_idx=0,
|
|
gen_tuning_buckets=(3, 4, 5),
|
|
map_to_tuning_buckets=lambda x: x),
|
|
DynamicTensorSpec(input_idx=1,
|
|
dim_idx=1,
|
|
gen_tuning_buckets=(64, 128, 256, 512),
|
|
map_to_tuning_buckets=lambda x: x),
|
|
), )
|
|
|
|
# Do tuning with a sample input
|
|
x = torch.randn(3, 64)
|
|
temp_dir = tempfile.TemporaryDirectory()
|
|
with autotune(cache_path=os.path.join(temp_dir.name,
|
|
"test_multiple_dynamic_shapes.json")):
|
|
tuner = AutoTuner.get()
|
|
runner, tactic = tuner.choose_one("test_multiple_dynamic_shapes",
|
|
runners, tuning_config, [x, w])
|
|
|
|
cache_entries = tuner.profiling_cache.get_specific_custom_op(
|
|
"test_multiple_dynamic_shapes")
|
|
assert len(cache_entries) == 12, \
|
|
f"Expected 12 cache entries for 3x4 shape combinations, got {len(cache_entries)}"
|
|
# Verify cache size - should have 12 entries (3x4 combinations)
|
|
# We also test the cache serialization and deserialization here.
|
|
AutoTuner.get().profiling_cache.clear()
|
|
AutoTuner.get().profiling_cache.load_cache(
|
|
os.path.join(temp_dir.name, "test_multiple_dynamic_shapes.rank0.json"))
|
|
cache_entries = tuner.profiling_cache.get_specific_custom_op(
|
|
"test_multiple_dynamic_shapes")
|
|
|
|
assert len(cache_entries) == 12, \
|
|
f"Expected 12 cache entries for 3x4 shape combinations, got {len(cache_entries)}"
|
|
|
|
|
|
class GemmRunnerComplexTuningConfigs(TunableRunner):
|
|
valid_tactic_ids = [-1, 0, 1]
|
|
tune_max_num_tokens = 32
|
|
|
|
def get_valid_tactics(
|
|
self,
|
|
inputs: List[FakeTensor],
|
|
profile: OptimizationProfile,
|
|
**kwargs,
|
|
) -> List[Dict[str, int]]:
|
|
# During the tuning process, we verify if the tuning config behaves as expected
|
|
|
|
assert inputs[0].shape[0] <= self.tune_max_num_tokens, \
|
|
f"Input shape {inputs[0].shape[0]} is larger than the max num tokens {self.tune_max_num_tokens}"
|
|
|
|
assert inputs[0][-1, 0] == inputs[0].shape[0], \
|
|
f"Input shape {inputs[0].shape[0]} is not set through the pre_hook correctly"
|
|
|
|
# The simulated delay is not deterministic, so we need to return specific tactics here
|
|
return [{
|
|
"block_size": block_size,
|
|
"tactic_id": tactic_id
|
|
} for tactic_id in self.valid_tactic_ids for block_size in [128, 256]]
|
|
|
|
def forward(
|
|
self,
|
|
/,
|
|
inputs: List[torch.Tensor],
|
|
*,
|
|
tactic: dict = {},
|
|
) -> torch.Tensor:
|
|
# Notice that in fallback case tactic is -1
|
|
if tactic == -1:
|
|
# assign default configs for fallback case
|
|
block_size, tactic_id = 128, -1
|
|
else:
|
|
block_size, tactic_id = tactic["block_size"], tactic["tactic_id"]
|
|
assert tactic_id in self.valid_tactic_ids
|
|
return [gemm_0, gemm_1, gemm_fallback][tactic_id](*inputs)
|
|
|
|
@staticmethod
|
|
def inputs_pre_hook(inputs: List[torch.Tensor]):
|
|
# always set the first element to bo iota in x
|
|
x, w = inputs
|
|
x_hooked = torch.zeros_like(x)
|
|
x_hooked[-1, 0] = x.shape[0]
|
|
return [x_hooked, w]
|
|
|
|
|
|
def test_autotuner_tuning_configs():
|
|
runner_0 = GemmRunnerComplexTuningConfigs()
|
|
runners = [runner_0]
|
|
x, w = torch.randn(64, 64), torch.randn(64, 128)
|
|
tuning_config = TuningConfig(
|
|
dynamic_tensor_specs=(DynamicTensorSpec(
|
|
input_idx=0,
|
|
dim_idx=0,
|
|
gen_tuning_buckets=get_power_of_2_num_tokens_buckets,
|
|
map_to_tuning_buckets=next_positive_power_of_2,
|
|
), ),
|
|
# Test if the number of tuning tokens is clipped to 32
|
|
tune_max_num_tokens=GemmRunnerComplexTuningConfigs.tune_max_num_tokens,
|
|
inputs_pre_hook=GemmRunnerComplexTuningConfigs.inputs_pre_hook,
|
|
)
|
|
with autotune():
|
|
tuner = AutoTuner.get()
|
|
runner, tactic = tuner.choose_one("test_autotuner_tactic_configs",
|
|
runners, tuning_config, [x, w])
|
|
|
|
runner_0.forward(inputs=[x, w], tactic=tactic)
|