TensorRT-LLMs/_modules/tensorrt_llm/layers/attention.html
2025-06-04 03:35:09 +00:00

3528 lines
489 KiB
HTML

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.layers.attention &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/layers/attention';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '0.21.0rc0';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="0.21.0rc0" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_eagle2_decoding.html">Generate Text Using Eagle2 Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/customization.html">LLM Common Customizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_eagle2_decoding.html">Generate Text Using Eagle2 Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-serve.html">trtllm-serve</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-management.html">KV Cache Management: Pools, Blocks, and Events</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.layers.attention</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.layers.attention</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span><span class="p">,</span> <span class="n">precision</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">fp32_array</span><span class="p">,</span> <span class="n">get_sm_version</span><span class="p">,</span> <span class="n">int32_array</span><span class="p">,</span> <span class="n">is_same_dtype</span><span class="p">,</span>
<span class="n">set_obj_attrs</span><span class="p">,</span> <span class="n">trt_dtype_to_np</span><span class="p">,</span> <span class="n">trt_dtype_to_str</span><span class="p">)</span>
<span class="c1"># isort: off</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">ACT2FN</span><span class="p">,</span> <span class="n">AllReduceParams</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="p">,</span> <span class="n">Conditional</span><span class="p">,</span> <span class="n">LayerNormType</span><span class="p">,</span>
<span class="n">PositionEmbeddingType</span><span class="p">,</span> <span class="n">RopeEmbeddingUtils</span><span class="p">,</span> <span class="n">RotaryScalingType</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">allgather</span><span class="p">,</span> <span class="n">arange</span><span class="p">,</span> <span class="n">bert_attention</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">clip</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span>
<span class="n">expand</span><span class="p">,</span> <span class="n">expand_dims</span><span class="p">,</span> <span class="n">expand_mask</span><span class="p">,</span> <span class="n">generate_alibi_biases</span><span class="p">,</span> <span class="n">identity</span><span class="p">,</span>
<span class="n">generate_alibi_slopes</span><span class="p">,</span> <span class="n">generate_logn_scaling</span><span class="p">,</span> <span class="n">gpt_attention</span><span class="p">,</span> <span class="n">matmul</span><span class="p">,</span>
<span class="n">minimum</span><span class="p">,</span> <span class="n">repeat_interleave</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="nb">slice</span><span class="p">,</span> <span class="n">softmax</span><span class="p">,</span> <span class="n">split</span><span class="p">,</span> <span class="n">unsqueeze</span><span class="p">,</span> <span class="n">where</span><span class="p">)</span>
<span class="c1"># isort: on</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..parameter</span><span class="w"> </span><span class="kn">import</span> <span class="n">Parameter</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantMode</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.functional</span><span class="w"> </span><span class="kn">import</span> <span class="n">dequantize</span><span class="p">,</span> <span class="n">quantize</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.linear</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnLinear</span><span class="p">,</span> <span class="n">RowLinear</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.lora</span><span class="w"> </span><span class="kn">import</span> <span class="n">LoraRuntimeParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.normalization</span><span class="w"> </span><span class="kn">import</span> <span class="n">GroupNorm</span><span class="p">,</span> <span class="n">LayerNorm</span><span class="p">,</span> <span class="n">RmsNorm</span>
<span class="n">layernorm_map</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">:</span> <span class="n">LayerNorm</span><span class="p">,</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">RmsNorm</span><span class="p">:</span> <span class="n">RmsNorm</span><span class="p">,</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">GroupNorm</span><span class="p">:</span> <span class="n">GroupNorm</span><span class="p">,</span>
<span class="p">}</span>
<div class="viewcode-block" id="make_causal_mask">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.make_causal_mask">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">make_causal_mask</span><span class="p">(</span><span class="n">bsz</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">past_key_values_length</span><span class="p">,</span> <span class="n">dtype</span><span class="p">):</span>
<span class="n">_range</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">tgt_len</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">dtype</span><span class="p">))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span><span class="n">_range</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">tgt_len</span><span class="p">,</span>
<span class="n">tgt_len</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">mask</span> <span class="o">&lt;</span> <span class="n">mask</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">),</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">expand_dims</span><span class="p">(</span><span class="n">zero</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">zero</span><span class="p">,</span> <span class="n">concat</span><span class="p">([</span><span class="n">tgt_len</span><span class="p">,</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">zero</span><span class="p">,</span> <span class="n">mask</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">*=</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">trt_dtype_to_np</span><span class="p">(</span><span class="n">dtype</span><span class="p">))</span><span class="o">.</span><span class="n">min</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">tgt_len</span> <span class="o">+</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span>
<span class="n">concat</span><span class="p">([</span><span class="n">bsz</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">tgt_len</span> <span class="o">+</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">mask</span></div>
<div class="viewcode-block" id="compute_relative_bias">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.compute_relative_bias">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">compute_relative_bias</span><span class="p">(</span><span class="n">query_length</span><span class="p">,</span>
<span class="n">key_length</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span>
<span class="n">max_distance</span><span class="p">,</span>
<span class="n">bidirectional</span><span class="p">,</span>
<span class="n">rel_attn_table</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">make_relative_position_bucket</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="n">bidirectional</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span> <span class="n">max_distance</span><span class="p">):</span>
<span class="n">relative_buckets</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="n">bidirectional</span><span class="p">:</span>
<span class="n">num_buckets</span> <span class="o">//=</span> <span class="mi">2</span>
<span class="n">relative_buckets</span> <span class="o">+=</span> <span class="n">where</span><span class="p">(</span><span class="n">relative_position</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="n">relative_position</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="mi">0</span> <span class="o">-</span> <span class="n">minimum</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">max_exact</span> <span class="o">=</span> <span class="n">num_buckets</span> <span class="o">//</span> <span class="mi">2</span>
<span class="n">is_small</span> <span class="o">=</span> <span class="n">relative_position</span> <span class="o">&lt;</span> <span class="n">max_exact</span>
<span class="n">max_exact_fp</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="n">max_exact</span><span class="p">))</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="s2">&quot;float32&quot;</span><span class="p">)</span> <span class="o">/</span> <span class="n">max_exact_fp</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">log</span><span class="p">()</span>
<span class="n">const1</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">max_distance</span> <span class="o">/</span> <span class="n">max_exact</span><span class="p">)</span>
<span class="n">const2</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="n">num_buckets</span> <span class="o">-</span> <span class="n">max_exact</span><span class="p">))</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">tmp</span> <span class="o">/</span> <span class="n">const1</span> <span class="o">*</span> <span class="n">const2</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">relative_position_if_large</span><span class="p">,</span> <span class="s2">&quot;int32&quot;</span><span class="p">)</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">max_exact</span> <span class="o">+</span> <span class="n">relative_position_if_large</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">minimum</span><span class="p">(</span><span class="n">relative_position_if_large</span><span class="p">,</span>
<span class="n">num_buckets</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">relative_buckets</span> <span class="o">+=</span> <span class="n">where</span><span class="p">(</span><span class="n">is_small</span><span class="p">,</span> <span class="n">relative_position</span><span class="p">,</span>
<span class="n">relative_position_if_large</span><span class="p">)</span>
<span class="k">return</span> <span class="n">relative_buckets</span>
<span class="n">context_position</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">query_length</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">))</span>
<span class="n">context_position</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">context_position</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">memory_position</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">key_length</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">))</span>
<span class="n">memory_position</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">memory_position</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="n">memory_position</span> <span class="o">-</span> <span class="n">context_position</span>
<span class="n">relative_position_bucket</span> <span class="o">=</span> <span class="n">make_relative_position_bucket</span><span class="p">(</span>
<span class="n">relative_position</span><span class="p">,</span> <span class="c1"># shape (query_length, key_length)</span>
<span class="n">bidirectional</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span>
<span class="n">max_distance</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># shape (query_length, key_length, num_heads)</span>
<span class="n">values</span> <span class="o">=</span> <span class="n">embedding</span><span class="p">(</span><span class="n">relative_position_bucket</span><span class="p">,</span>
<span class="n">rel_attn_table</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="c1"># shape (1, num_heads, query_length, key_length)</span>
<span class="n">values</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">values</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">return</span> <span class="n">values</span></div>
<div class="viewcode-block" id="AttentionMaskParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionMaskParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">AttentionMaskParams</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">self_attention_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">self_attention_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">self_attention_mask</span> <span class="o">=</span> <span class="n">self_attention_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">self_attention_packed_mask</span> <span class="o">=</span> <span class="n">self_attention_packed_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_mask</span> <span class="o">=</span> <span class="n">cross_attention_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_packed_mask</span> <span class="o">=</span> <span class="n">cross_attention_packed_mask</span></div>
<div class="viewcode-block" id="AttentionParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">AttentionParams</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_max_input_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sequence_length</span> <span class="o">=</span> <span class="n">sequence_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">context_lengths</span> <span class="o">=</span> <span class="n">context_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="o">=</span> <span class="n">host_context_lengths</span>
<span class="c1"># max allowed context length. Required to</span>
<span class="c1"># compute scratch memory size.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_context_length</span> <span class="o">=</span> <span class="n">max_context_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_request_types</span> <span class="o">=</span> <span class="n">host_request_types</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder_input_lengths</span> <span class="o">=</span> <span class="n">encoder_input_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder_max_input_length</span> <span class="o">=</span> <span class="n">encoder_max_input_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_runtime_perf_knobs</span> <span class="o">=</span> <span class="n">host_runtime_perf_knobs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_context_progress</span> <span class="o">=</span> <span class="n">host_context_progress</span>
<span class="c1"># const parameters that will be reused by all layers.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># auxiliary params to support models with non-homegeneous attn layers requiring</span>
<span class="c1"># a different set of rope params. e.g. Gemma3.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># long rope const parameters</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<div class="viewcode-block" id="AttentionParams.fill_attention_const_params_for_rope">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.fill_attention_const_params_for_rope">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_const_params_for_rope</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">embed_positions</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_for_gpt_attention</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_inv_freq_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_for_gpt_attention_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="n">embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="n">rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_local</span> <span class="o">=</span> <span class="n">embed_positions_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="n">rotary_inv_freq_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention_local</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="AttentionParams.fill_attention_const_params_for_long_rope">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.fill_attention_const_params_for_long_rope">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_const_params_for_long_rope</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">embed_positions</span><span class="p">,</span> <span class="n">long_rope_embed_positions</span><span class="p">,</span> <span class="n">rotary_inv_freq</span><span class="p">,</span>
<span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">,</span> <span class="n">short_mscale</span><span class="p">,</span>
<span class="n">long_mscale</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="n">embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions</span> <span class="o">=</span> <span class="n">long_rope_embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="n">rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="n">long_rope_rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">long_rope_embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="n">short_mscale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="AttentionParams.is_valid_cross_attn">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.is_valid_cross_attn">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid_cross_attn</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">do_cross_attention</span><span class="p">):</span>
<span class="k">if</span> <span class="n">do_cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder_input_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder_max_input_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
<div class="viewcode-block" id="AttentionParams.is_valid">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.is_valid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">gpt_attention_plugin</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">use_kv_cache</span><span class="p">):</span>
<span class="k">if</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="n">use_kv_cache</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">sequence_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_request_types</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_context_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_runtime_perf_knobs</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_context_progress</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
</div>
<div class="viewcode-block" id="SpecDecodingParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.SpecDecodingParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">SpecDecodingParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span> <span class="o">=</span> <span class="n">spec_decoding_is_generation_length_variable</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_max_generation_length</span> <span class="o">=</span> <span class="n">spec_decoding_max_generation_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_generation_lengths</span> <span class="o">=</span> <span class="n">spec_decoding_generation_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_position_offsets</span> <span class="o">=</span> <span class="n">spec_decoding_position_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_packed_mask</span> <span class="o">=</span> <span class="n">spec_decoding_packed_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_use</span> <span class="o">=</span> <span class="n">spec_decoding_use</span></div>
<div class="viewcode-block" id="MropeParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.MropeParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">MropeParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mrope_rotary_cos_sin</span> <span class="o">=</span> <span class="n">mrope_rotary_cos_sin</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mrope_position_deltas</span> <span class="o">=</span> <span class="n">mrope_position_deltas</span></div>
<div class="viewcode-block" id="KeyValueCacheParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">KeyValueCacheParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">past_key_value_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_pool_mapping</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="o">=</span> <span class="n">past_key_value</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="o">=</span> <span class="n">host_past_key_value_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_max_attention_window_sizes</span> <span class="o">=</span> <span class="n">host_max_attention_window_sizes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_sink_token_length</span> <span class="o">=</span> <span class="n">host_sink_token_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">host_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_pool_pointers</span> <span class="o">=</span> <span class="n">host_kv_cache_pool_pointers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_pool_mapping</span> <span class="o">=</span> <span class="n">host_kv_cache_pool_mapping</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">cross_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_pool_pointers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_mapping</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_pool_mapping</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cache_indirection</span> <span class="o">=</span> <span class="n">cache_indirection</span>
<span class="c1"># self.past_key_value_length = past_key_value_length</span>
<div class="viewcode-block" id="KeyValueCacheParams.get_first_past_key_value">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.get_first_past_key_value">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_first_past_key_value</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></div>
<div class="viewcode-block" id="KeyValueCacheParams.fill_none_tensor_list">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.fill_none_tensor_list">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_none_tensor_list</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">list_size</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">([</span><span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="n">list_size</span><span class="p">)</span></div>
<div class="viewcode-block" id="KeyValueCacheParams.is_valid">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.is_valid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">gpt_attention_plugin</span><span class="p">):</span>
<span class="k">if</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_max_attention_window_sizes</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_sink_token_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cache_indirection</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
</div>
<div class="viewcode-block" id="BlockSparseAttnParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BlockSparseAttnParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">BlockSparseAttnParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">block_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span>
<span class="n">homo_head_pattern</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">num_local_blocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span>
<span class="n">vertical_stride</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">block_size</span> <span class="o">=</span> <span class="n">block_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">homo_head_pattern</span> <span class="o">=</span> <span class="n">homo_head_pattern</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_local_blocks</span> <span class="o">=</span> <span class="n">num_local_blocks</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vertical_stride</span> <span class="o">=</span> <span class="n">vertical_stride</span></div>
<div class="viewcode-block" id="Attention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">Attention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">apply_query_key_layer_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">qk_layernorm</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">layernorm_type</span><span class="o">=</span><span class="n">LayerNormType</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">,</span>
<span class="n">layernorm_share</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">inner_layernorm</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-05</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">padding</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_base_local</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_embedding_percentage</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">rope_scaling_short_factors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_long_factors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_short_mscale</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_long_mscale</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">cross_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">clip_qkv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">alibi_bias_max</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
<span class="n">skip_cross_kv</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_attn_value</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">block_sparse_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">use_implicit_relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">reorder</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">enable_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">max_seqlen_for_logn_scaling</span><span class="o">=</span><span class="mi">8192</span><span class="p">,</span>
<span class="n">use_logn_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_local</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span> <span class="o">=</span> <span class="n">local_layer_idx</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="o">=</span> <span class="n">cross_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">=</span> <span class="n">attention_mask_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="k">assert</span> <span class="n">num_attention_heads</span> <span class="o">%</span> <span class="n">tp_size</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> \
<span class="s2">&quot;num_attention_heads must be divisible by tp_size&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span>
<span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span> <span class="o">=</span> <span class="n">num_kv_heads</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">original_max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span> <span class="o">=</span> <span class="n">dense_bias</span>
<span class="k">if</span> <span class="n">dense_bias</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span> <span class="o">=</span> <span class="n">cp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="o">=</span> <span class="n">is_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span> <span class="o">=</span> <span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span> <span class="o">=</span> <span class="n">apply_query_key_layer_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="n">q_scaling</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="c1"># Whether to scale ALiBi bias. Mathematically, it&#39;s equivalent to</span>
<span class="c1"># normalizing QK after adding bias.</span>
<span class="c1"># - False, inv_sqrt_Dh * Q*K^T + alibi_bias</span>
<span class="c1"># - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale_alibi_bias</span> <span class="o">=</span> <span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">alibi_with_scale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alibi_bias_max</span> <span class="o">=</span> <span class="n">alibi_bias_max</span>
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">position_embedding_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="o">=</span> <span class="n">relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="n">max_distance</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span> <span class="o">=</span> <span class="n">num_buckets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span> <span class="o">=</span> <span class="n">rotary_embedding_base</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base_local</span> <span class="o">=</span> <span class="n">rotary_embedding_base_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scaling</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_percentage</span> <span class="o">=</span> <span class="n">rotary_embedding_percentage</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="ow">and</span> <span class="n">use_implicit_relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_seqlen_for_logn_scaling</span> <span class="o">=</span> <span class="n">max_seqlen_for_logn_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span> <span class="o">=</span> <span class="n">use_logn_scaling</span>
<span class="k">if</span> <span class="n">rotary_embedding_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rotary_scaling_type</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;type&quot;</span><span class="p">,</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;rope_type&quot;</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">from_string</span><span class="p">(</span>
<span class="n">rotary_scaling_type</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;factor&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span>
<span class="n">rotary_embedding_percentage</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_scale</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_alibi_bias</span> <span class="k">else</span> <span class="mf">1.</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="n">generate_alibi_slopes</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">alibi_scale</span><span class="o">=</span><span class="n">alibi_scale</span><span class="p">,</span>
<span class="n">alibi_bias_max</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">alibi_bias_max</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;alibi_slopes&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span><span class="p">:</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="n">generate_logn_scaling</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_seqlen_for_logn_scaling</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;logn_scaling&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">logn_scaling</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span> <span class="o">=</span> <span class="n">quant_mode</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">=</span> <span class="n">max_attn_value</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;kv_cache_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;attention_output_orig_quant_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;attention_output_sf_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span> <span class="o">=</span> <span class="n">block_sparse_params</span> <span class="k">if</span> <span class="n">block_sparse_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">BlockSparseAttnParams</span><span class="p">(</span>
<span class="p">)</span>
<span class="c1"># The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads,</span>
<span class="c1"># d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size.</span>
<span class="c1"># In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp,</span>
<span class="c1"># which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting</span>
<span class="c1"># out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size</span>
<span class="c1"># example: d_model != num_heads * head_size in Flan-T5/ByT5/Gemma</span>
<span class="k">if</span> <span class="n">enable_qkv</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="c1"># see optimize_model&#39;s add_lora for LoRA initialization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># per-layer relative attention table</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_attention_heads</span> <span class="o">//</span>
<span class="n">tp_size</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># qk layernorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span> <span class="o">=</span> <span class="n">qk_layernorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layernorm_type</span> <span class="o">=</span> <span class="n">layernorm_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layernorm_share</span> <span class="o">=</span> <span class="n">layernorm_share</span>
<span class="n">ln_type</span> <span class="o">=</span> <span class="n">layernorm_map</span><span class="p">[</span><span class="n">layernorm_type</span><span class="p">]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="c1"># layernorm_share indicates whether all the QK head in one layer shares the same norm parameters or not</span>
<span class="k">if</span> <span class="n">layernorm_share</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">ln_type</span> <span class="o">==</span> <span class="n">LayerNorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span> <span class="k">if</span> <span class="n">inner_layernorm</span> <span class="k">else</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">clip_qkv</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="o">=</span> <span class="n">fp32_array</span><span class="p">([</span><span class="n">clip_qkv</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">skip_cross_kv</span> <span class="o">=</span> <span class="n">skip_cross_kv</span>
<div class="viewcode-block" id="Attention.create_attention_const_params">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.create_attention_const_params">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">create_attention_const_params</span><span class="p">(</span><span class="n">model_cls</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="c1"># get rotary parameters.</span>
<span class="n">hidden_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">head_size</span>
<span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span>
<span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">position_embedding_type</span>
<span class="n">rotary_embedding_base</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_base&#39;</span><span class="p">,</span> <span class="mf">10000.0</span><span class="p">)</span>
<span class="n">rotary_embedding_scaling</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_scaling&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_embedding_percentage</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_pct&#39;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="c1"># only rope need the const parameters.</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">return</span>
<span class="c1"># attention head size</span>
<span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="c1"># rotary embedding dim.</span>
<span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_dim&#39;</span><span class="p">,</span>
<span class="nb">int</span><span class="p">(</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="n">rotary_embedding_percentage</span><span class="p">))</span>
<span class="c1"># rotary scaling.</span>
<span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="k">if</span> <span class="n">rotary_embedding_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rotary_scaling_type</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;type&quot;</span><span class="p">,</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;rope_type&quot;</span><span class="p">))</span>
<span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">from_string</span><span class="p">(</span>
<span class="n">rotary_scaling_type</span><span class="p">)</span>
<span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;factor&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="k">if</span> <span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">rope_scaling_short_factors</span><span class="p">,</span> <span class="n">rope_scaling_long_factors</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">rope_scaling_short_mscale</span><span class="p">,</span> <span class="n">rope_scaling_long_mscale</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s2">&quot;longrope_scaling_short_factors&quot;</span><span class="p">):</span>
<span class="n">rope_scaling_short_factors</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span>
<span class="n">config</span><span class="o">.</span><span class="n">longrope_scaling_short_factors</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">rope_scaling_long_factors</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span>
<span class="n">config</span><span class="o">.</span><span class="n">longrope_scaling_long_factors</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">original_max_position_embeddings</span>
<span class="k">if</span> <span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s2">&quot;Phi3SmallForCausalLM&quot;</span> <span class="ow">or</span> <span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s2">&quot;PhiMoEForCausalLM&quot;</span><span class="p">:</span>
<span class="n">rope_scaling_short_mscale</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">longrope_short_mscale</span>
<span class="n">rope_scaling_long_mscale</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">longrope_long_mscale</span>
<span class="n">embed_positions</span><span class="p">,</span> <span class="n">long_rope_embed_positions</span><span class="p">,</span> \
<span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span><span class="p">),</span> \
<span class="p">(</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span> <span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">),</span> <span class="n">mscale</span> \
<span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_long_rope</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="n">rope_scaling_short_factors</span><span class="p">,</span>
<span class="n">rope_scaling_long_factors</span><span class="p">,</span> <span class="n">rope_scaling_short_mscale</span><span class="p">,</span> <span class="n">rope_scaling_long_mscale</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rope_scaling_short_mscale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">rope_scaling_long_mscale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">short_mscale</span> <span class="o">=</span> <span class="n">rope_scaling_short_mscale</span>
<span class="n">long_mscale</span> <span class="o">=</span> <span class="n">rope_scaling_long_mscale</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">short_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span> <span class="o">=</span> <span class="n">mscale</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_embed_positions</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="n">short_mscale</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span>
<span class="k">elif</span> <span class="n">rotary_embedding_scale_type</span> <span class="o">==</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">yarn</span><span class="p">:</span>
<span class="n">beta_fast</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;beta_fast&quot;</span><span class="p">,</span> <span class="mf">32.0</span><span class="p">)</span>
<span class="n">beta_slow</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;beta_slow&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">mscale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">mscale_all_dim</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale_all_dim&quot;</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;original_max_position_embeddings&quot;</span><span class="p">,</span> <span class="mi">4096</span><span class="p">)</span>
<span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_yarn</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="n">beta_fast</span><span class="p">,</span> <span class="n">beta_slow</span><span class="p">,</span> <span class="n">mscale</span><span class="p">,</span>
<span class="n">mscale_all_dim</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="nf">register_rope_params</span><span class="p">(</span><span class="n">rotary_base</span><span class="p">,</span> <span class="n">names_to_register</span><span class="p">):</span>
<span class="c1"># Rotary const weights.</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_for_attention_plugin</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span> <span class="n">rotary_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scale</span><span class="p">,</span> <span class="n">rotary_embedding_scale_type</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="p">)</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">register_rope_params</span><span class="p">(</span><span class="n">rotary_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">names_to_register</span><span class="o">=</span><span class="p">[</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span> <span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span>
<span class="p">])</span>
<span class="c1"># For models with non-homegeneous attention layers requiring a second set of rope params. e.g. Gemma3.</span>
<span class="n">rotary_embedding_base_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span>
<span class="s1">&#39;rope_local_base_freq&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rotary_embedding_base_local</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">register_rope_params</span><span class="p">(</span>
<span class="n">rotary_base</span><span class="o">=</span><span class="n">rotary_embedding_base_local</span><span class="p">,</span>
<span class="n">names_to_register</span><span class="o">=</span><span class="p">[</span>
<span class="s1">&#39;embed_positions_local&#39;</span><span class="p">,</span> <span class="s1">&#39;rotary_inv_freq_local&#39;</span><span class="p">,</span>
<span class="s1">&#39;embed_positions_for_gpt_attention_local&#39;</span>
<span class="p">])</span></div>
<div class="viewcode-block" id="Attention.fill_attention_params">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.fill_attention_params">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_params</span><span class="p">(</span><span class="n">model_cls</span><span class="p">,</span> <span class="n">attention_params</span><span class="p">):</span>
<span class="k">if</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">if</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">AttentionParams</span><span class="p">()</span>
<span class="k">if</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="k">return</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">fill_attention_const_params_for_long_rope</span><span class="p">(</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">short_mscale</span><span class="p">,</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">long_mscale</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">fill_attention_const_params_for_rope</span><span class="p">(</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_local</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span> <span class="s2">&quot;embed_positions_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span> <span class="s2">&quot;rotary_inv_freq_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span>
<span class="s2">&quot;embed_positions_for_gpt_attention_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Fill nothing.</span>
<span class="k">return</span> <span class="n">attention_params</span></div>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_output_orig_quant_scale</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">attention_output_orig_quant_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_plugin</span> <span class="o">==</span> <span class="s1">&#39;nvfp4&#39;</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_nvfp4</span><span class="p">()):</span>
<span class="c1"># The scale was intended for nvfp4 quantization: max_value * scale = fp4_max * fp8_max</span>
<span class="c1"># So if we want to quantize the output to fp8, the scale should be divided by fp4_max</span>
<span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="n">attention_output_orig_quant_scale</span> <span class="o">/</span> <span class="mf">6.0</span>
<span class="k">return</span> <span class="n">attention_output_orig_quant_scale</span>
<div class="viewcode-block" id="Attention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_packed_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_output</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">norm_before_bmm1</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">lora_layer_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_cache_gen</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_reuse</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">all_reduce_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AllReduceParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">skip_attn</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="n">attention_input</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="p">(</span><span class="n">Tensor</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">))</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">SpecDecodingParams</span><span class="p">(</span>
<span class="p">)</span> <span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">spec_decoding_params</span>
<span class="n">mrope_params</span> <span class="o">=</span> <span class="n">MropeParams</span><span class="p">()</span> <span class="k">if</span> <span class="n">mrope_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">mrope_params</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span><span class="p">:</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">logn_scaling</span><span class="o">.</span><span class="n">value</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alibi_slopes</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_qkv&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_qkv&quot;</span><span class="p">)</span>
<span class="n">unfuse_qkv_gemm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="n">qkv_gemm</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v</span><span class="p">]</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="p">[</span><span class="n">gemm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span> <span class="k">for</span> <span class="n">gemm</span> <span class="ow">in</span> <span class="n">qkv_gemm</span><span class="p">]</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">lora</span><span class="p">,</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="p">[</span><span class="n">tensor</span> <span class="o">+</span> <span class="n">lora</span> <span class="k">for</span> <span class="n">tensor</span><span class="p">,</span> <span class="n">lora</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_lora</span><span class="p">)]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">clip</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="k">for</span> <span class="n">tensor</span> <span class="ow">in</span> <span class="n">qkv</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">tensor</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_v&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_v&quot;</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> \
<span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">),</span> <span class="s2">&quot;q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time.&quot;</span>
<span class="k">if</span> <span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_runtime_params</span> <span class="o">=</span> <span class="n">LoraRuntimeParams</span><span class="p">(</span>
<span class="n">lora_ranks</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">lora_weights_pointers</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">max_encoder_context_length</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span>
<span class="n">max_encoder_context_length</span><span class="p">,</span>
<span class="n">host_encoder_input_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span>
<span class="n">host_encoder_input_lengths</span><span class="p">,</span>
<span class="n">partial_lora_mask</span><span class="o">=</span><span class="n">lora_layer_params</span><span class="o">.</span><span class="n">partial_lora_mask</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">)</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">q_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span> <span class="o">+</span> <span class="n">qkv_lora</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_lora_runtime_params</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="n">qkv_sections</span> <span class="o">=</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">]</span>
<span class="n">total_heads</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">qkv_sections</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">base_shape</span><span class="p">,</span> <span class="n">total_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">]))</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_sections</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">q_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">normalized_shape</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">layernorm_share</span><span class="p">:</span>
<span class="n">normalized_shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="o">=</span><span class="n">normalized_shape</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="o">=</span><span class="n">normalized_shape</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">query</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">base_shape</span><span class="p">,</span> <span class="n">total_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">]))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">chatglm</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb_chatglm</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="n">paged_kv_cache</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="c1"># if cross attention, cross QKV only needs to be calculated once in the</span>
<span class="c1"># 1st decoding step --&gt; write to cross KV cache --&gt; remains constant</span>
<span class="c1"># during the entire decoding steps.</span>
<span class="c1"># 1st and &gt;1st steps are distinguished by a boolean tensor `cross_kv_cache_gen` passed at runtime</span>
<span class="c1"># also, cross KV cache max length is set from encoder output seqlen,</span>
<span class="c1"># this maps to the max context length concept in decoder-only models</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="n">encoder_output</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">compute_cross_kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">&#39;kv&#39;</span><span class="p">):</span>
<span class="c1"># We optimize the graph by adding kv in the cross attention layer, preventing computing the</span>
<span class="c1"># query of encoder_output.</span>
<span class="k">assert</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;Not support LoRA when we only compute key/value in cross atteniton&quot;</span>
<span class="c1"># see optimization_model&#39;s optimize_cross_qkv</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span>
<span class="n">cross_kv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_kv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">key</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cross_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span>
<span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="n">cross_qkv</span> <span class="o">=</span> <span class="n">cross_qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span>
<span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">key</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">cross_kv</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="mi">2</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">cross_k_lora</span><span class="p">,</span> <span class="n">cross_v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span>
<span class="n">encoder_output</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">,</span>
<span class="n">is_cross_attention</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">cross_kv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">cross_k_lora</span><span class="p">,</span> <span class="n">cross_v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_k_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span> <span class="o">+</span> <span class="n">cross_kv_lora</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">,</span>
<span class="n">is_cross_attention</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">return</span> <span class="n">cross_kv</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">skip_cross_kv</span><span class="p">:</span>
<span class="n">conditional</span> <span class="o">=</span> <span class="n">Conditional</span><span class="p">(</span><span class="n">cross_kv_cache_gen</span><span class="p">)</span>
<span class="n">cond_in1</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">)</span>
<span class="n">cond_in2</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">cross_kv_reuse</span><span class="p">)</span>
<span class="c1">## True branch: context phase, compute cross qkv</span>
<span class="n">cross_kv_true</span> <span class="o">=</span> <span class="n">compute_cross_kv</span><span class="p">(</span><span class="n">cond_in1</span><span class="p">)</span>
<span class="c1">## False branch: generation phase, no compute but need to obey shape constraints</span>
<span class="c1"># because TRT&#39;s IfConditional requires the output shape of two subgraphs to be identical</span>
<span class="c1"># our 1st attempt was to stack encoder_output [B, S, H] or [N, H] --&gt; cross qkv [B, S, 3*H] or [N, 3*H],</span>
<span class="c1"># but it still introduces unnecessary concat. A better solution is to create a dummy torch tensor `cross_kv_resue`</span>
<span class="c1"># with the correct shape and reuse it in every generation step</span>
<span class="n">cross_kv_false</span> <span class="o">=</span> <span class="n">cond_in2</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_output</span><span class="p">(</span><span class="n">cross_kv_true</span><span class="p">,</span> <span class="n">cross_kv_false</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">compute_cross_kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">blocksparse</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># The output SF scale, needed when fuse_fp4_quant is enabled.</span>
<span class="n">attention_output_sf_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_sf_scale</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_sf_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="kc">None</span>
<span class="c1"># The rotary inv freq can be pre-computed.</span>
<span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;rotary_inv_freq&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Rotary cos/sin cache.</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;embed_positions_for_gpt_attention&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;rotary_inv_freq_local&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_cos_sin_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;embed_positions_for_gpt_attention_local&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;long_rope_rotary_inv_freq&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="n">long_rope_rotary_cos_sin</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;long_rope_embed_positions_for_gpt_attention&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">:</span>
<span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># check if the cache is provided.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">rotary_inv_freq</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">rotary_cos_sin</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="p">),</span> <span class="s2">&quot;rotary_inv_freq and embed_positions_for_gpt_attention must be provided.&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">long_rope_rotary_inv_freq</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">assert</span> <span class="n">long_rope_rotary_cos_sin</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">attention_packed_mask</span><span class="o">=</span><span class="n">attention_packed_mask</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base_local</span><span class="p">,</span>
<span class="n">rotary_embedding_scale_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span><span class="p">,</span>
<span class="n">rotary_embedding_short_m_scale</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">short_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_long_m_scale</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">long_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">rotary_embedding_max_positions</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_original_max_positions</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="o">=</span><span class="n">rotary_inv_freq</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="n">rotary_inv_freq_local</span><span class="p">,</span>
<span class="n">rotary_cos_sin</span><span class="o">=</span><span class="n">rotary_cos_sin</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="n">rotary_cos_sin_local</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">attention_output_sf_scale</span><span class="o">=</span><span class="n">attention_output_sf_scale</span><span class="p">,</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">block_sparse_block_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span><span class="n">block_size</span><span class="p">,</span>
<span class="n">block_sparse_homo_head_pattern</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">homo_head_pattern</span><span class="p">,</span>
<span class="n">block_sparse_num_local_blocks</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">num_local_blocks</span><span class="p">,</span>
<span class="n">block_sparse_vertical_stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">vertical_stride</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="n">alibi_slopes</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="n">cross_kv</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">logn_scaling</span><span class="o">=</span><span class="n">logn_scaling</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="o">=</span><span class="n">spec_decoding_params</span>
<span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span><span class="n">spec_decoding_use</span><span class="p">,</span>
<span class="n">long_rope_rotary_inv_freq</span><span class="o">=</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span>
<span class="n">long_rope_rotary_cos_sin</span><span class="o">=</span><span class="n">long_rope_rotary_cos_sin</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="o">=</span><span class="n">mrope_params</span><span class="o">.</span><span class="n">mrope_rotary_cos_sin</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="o">=</span><span class="n">mrope_params</span><span class="o">.</span><span class="n">mrope_position_deltas</span><span class="p">,</span>
<span class="n">attn_logit_softcapping_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="n">skip_attn</span><span class="o">=</span><span class="n">skip_attn</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TensorRT mode</span>
<span class="k">assert</span> <span class="n">paged_kv_cache</span> <span class="o">==</span> <span class="kc">False</span>
<span class="k">assert</span> <span class="n">logn_scaling</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;plan TensorRT mode does not support logn scaling now&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">,</span>
<span class="n">rotary</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">is_kv</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
<span class="n">_num_attention_heads</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="k">if</span> <span class="n">is_kv</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">_num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="k">if</span> <span class="n">rotary</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="c1"># qkv after projection is of shape</span>
<span class="c1"># [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size].</span>
<span class="c1"># The projected and split qkv after transpose_for_scores():</span>
<span class="c1"># Q[bs, num_attention_heads, seqlen, attention_head_size]</span>
<span class="c1"># K[bs, num_attention_kv_heads, seqlen, attention_head_size]</span>
<span class="c1"># V[bs, num_attention_kv_heads, seqlen, attention_head_size]</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="c1"># in cross attention mode, replace kv by encoder_output</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="n">encoder_output</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="p">[</span><span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span>
<span class="n">query</span><span class="p">,</span> <span class="n">rotary</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">())</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span> <span class="n">is_kv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">rotary</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">())</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="n">is_kv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">sequence_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">floor_seq_length</span> <span class="o">=</span> <span class="n">maximum</span><span class="p">(</span>
<span class="n">sequence_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">shapes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="n">floor_seq_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">])</span>
<span class="n">short</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span>
<span class="n">shapes</span><span class="p">)</span>
<span class="n">long</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">long_rope_embed_positions</span><span class="p">,</span>
<span class="n">starts</span><span class="p">,</span> <span class="n">shapes</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">short</span><span class="p">,</span> <span class="n">long</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">select</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">sequence_length</span>
<span class="o">&lt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">concat</span><span class="p">([</span><span class="n">select</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">shape</span><span class="p">(</span><span class="n">short</span><span class="p">))</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">is_same_dtype</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">trt</span><span class="o">.</span><span class="n">bfloat16</span><span class="p">):</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">trt</span><span class="o">.</span><span class="n">bfloat16</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">query</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># When shape(hidden_states, 1) &gt; 1(Context phase), the embedding start from 0,</span>
<span class="c1"># otherwise (Generation phase) move start to position</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="c1"># Only context phase is involved when kv cache is disabled.</span>
<span class="n">start</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key_value</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sincos</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">]))</span>
<span class="n">sin</span><span class="p">,</span> <span class="n">cos</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">sincos</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">key_rot_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="p">])</span>
<span class="n">query_rot_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="p">])</span>
<span class="n">remaining</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="n">key_pass_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">remaining</span>
<span class="p">])</span>
<span class="n">query_pass_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">remaining</span>
<span class="p">])</span>
<span class="n">k_rot</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">key_rot_size</span><span class="p">)</span>
<span class="n">k_pass</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">],</span>
<span class="n">key_pass_size</span><span class="p">)</span>
<span class="n">q_rot</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">query_rot_size</span><span class="p">)</span>
<span class="n">q_pass</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">],</span>
<span class="n">query_pass_size</span><span class="p">)</span>
<span class="n">k_rot</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">k_rot</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">q_rot</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">q_rot</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">k_rot</span><span class="p">,</span> <span class="n">k_pass</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_rot</span><span class="p">,</span> <span class="n">q_pass</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">dequantize</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">output_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># past_key_value [bs, 2, num_heads, max_seq_len, head_dim]</span>
<span class="n">past_key</span><span class="p">,</span> <span class="n">past_value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">past_key_value</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">key_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">past_key</span> <span class="o">=</span> <span class="n">past_key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_shape</span><span class="p">,</span> <span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">past_value</span> <span class="o">=</span> <span class="n">past_value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">past_key</span><span class="p">,</span> <span class="n">key</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">past_value</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">key_inflated_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">inflated_key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_inflated_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">inflated_value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_inflated_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">inflated_key</span><span class="p">,</span> <span class="n">inflated_value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># TRT quantizes the tensor value by doing `cast(clip(fp_value / scale))` while</span>
<span class="c1"># the plugin quantizes it by doing `cast(clip(fp_value * scale))`.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">quantize</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;fp8&#39;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_fp8_kv_cache</span><span class="p">()</span> <span class="k">else</span> <span class="s1">&#39;int8&#39;</span><span class="p">)</span>
<span class="c1"># MQA broadcast</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span>
<span class="n">value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">key_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1"># The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and</span>
<span class="c1"># +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix</span>
<span class="c1"># multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that</span>
<span class="c1"># follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor.</span>
<span class="c1">#</span>
<span class="c1"># Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower-</span>
<span class="c1"># triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">==</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1"># bsz, tatget_length, past_key_value_length</span>
<span class="n">buffer</span> <span class="o">=</span> <span class="n">make_causal_mask</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">query_length</span><span class="p">,</span>
<span class="n">key_length</span> <span class="o">-</span> <span class="n">query_length</span><span class="p">,</span>
<span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">sizes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="n">key_length</span><span class="p">])</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">buffer</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span> <span class="n">sizes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">key_length</span> <span class="o">-</span> <span class="n">query_length</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">sizes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="n">key_length</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">buf_shape</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">buf_shape</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span>
<span class="n">select_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">tril</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">buf_shape</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">bool</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">select_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_not</span><span class="p">(</span><span class="n">select_buf</span><span class="p">)</span>
<span class="n">mask_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">select_buf</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">mask_buf</span><span class="p">[</span><span class="n">select_buf</span><span class="p">]</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">)</span>
<span class="n">buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">mask_buf</span><span class="p">)</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">buffer</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span> <span class="n">sizes</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">==</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">zero_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">zero_buf</span><span class="p">[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">zero_buf</span> <span class="o">*=</span> <span class="o">-</span><span class="mi">10000</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">zero_buf</span><span class="p">)</span>
<span class="c1"># context phase, query_length</span>
<span class="n">mask_size</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">query_length</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">mask_start</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">query_length</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">-</span> <span class="n">mask_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">mask_start</span><span class="p">,</span> <span class="n">mask_start</span><span class="p">])</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">mask_size</span><span class="p">,</span> <span class="n">mask_size</span><span class="p">])</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">query_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">encoder_input_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">attention_mask</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_len</span><span class="p">,</span> <span class="n">encoder_input_len</span><span class="p">]))</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">attention_mask</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">),</span>
<span class="mf">0.0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">expand_mask</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">attention_mask</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_biases</span> <span class="o">=</span> <span class="n">generate_alibi_biases</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">key_length</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">alibi_biases</span> <span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">bias</span> <span class="o">+</span> <span class="n">alibi_biases</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span><span class="p">:</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="n">compute_relative_bias</span><span class="p">(</span>
<span class="n">query_length</span> <span class="o">+</span> <span class="n">key_length</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">key_length</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="kc">False</span><span class="p">,</span> <span class="c1"># bidirectional</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">query_length</span> <span class="o">+</span> <span class="n">key_length</span> <span class="o">-</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">key_length</span>
<span class="p">])</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">model_type</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">dtype</span>
<span class="k">with</span> <span class="n">precision</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">):</span>
<span class="c1"># FIXME the &quot;with precision(&#39;float32&#39;) does not really work and lead to nan&quot;</span>
<span class="c1"># in some cases</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">norm_before_bmm1</span><span class="p">:</span>
<span class="c1"># Apply norm on query earlier to prevent matmul fp16 overflow.</span>
<span class="n">query</span> <span class="o">/=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">norm_before_bmm1</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">*</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">&#39;tanh&#39;</span><span class="p">](</span>
<span class="n">attention_scores</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span>
<span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">generated_mask</span> <span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">bias</span> <span class="o">+</span> <span class="n">generated_mask</span>
<span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">bias</span><span class="p">,</span> <span class="n">attention_scores</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">bias</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">relative_bias</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">model_type</span><span class="p">)</span>
<span class="c1"># A dummy reshape WAR for mha fusion</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">attention_probs</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="p">]))</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span>
<span class="p">]))</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_dense&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">skip_attn</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">use_fp8_context_fmha</span><span class="p">:</span>
<span class="c1"># This case is used when we can skip this attention layer directly.</span>
<span class="c1"># The output would be undefined and not used if skip_attn is not None</span>
<span class="c1"># and set skip_attn as True during runtime</span>
<span class="c1"># But when use_fp8_context_fmha is enabled, the output data type of</span>
<span class="c1"># attention_plugin is fp8. Since TRT&#39;s conditional layer does not support</span>
<span class="c1"># FP8 data type yet, we cannot use it to skip the computation in such case.</span>
<span class="n">dense_conditional</span> <span class="o">=</span> <span class="n">Conditional</span><span class="p">(</span><span class="n">skip_attn</span><span class="p">)</span>
<span class="n">skip_case</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">attention_input</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">,</span>
<span class="n">lora_runtime_params</span><span class="o">=</span><span class="n">dense_lora_params</span><span class="p">,</span>
<span class="n">all_reduce_params</span><span class="o">=</span><span class="n">all_reduce_params</span><span class="p">)</span>
<span class="k">if</span> <span class="n">skip_attn</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">use_fp8_context_fmha</span><span class="p">:</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_output</span><span class="p">(</span><span class="n">skip_case</span><span class="p">,</span> <span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
<div class="viewcode-block" id="Attention.set_rel_attn_table">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.set_rel_attn_table">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">set_rel_attn_table</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">max_seq_len</span><span class="p">,</span> <span class="n">precomputed_relative_attention</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_seq_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">max_seq_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">precomputed_relative_attention</span></div>
<div class="viewcode-block" id="Attention.postprocess">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.postprocess">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">postprocess</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s2">&quot;kv_cache_scaling_factor&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">weights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="kc">None</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="nb">max</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s2">&quot;kv_cache_rcp_scaling_factor&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">weights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="n">weights</span><span class="o">.</span><span class="n">float</span><span class="p">())}</span>
<span class="k">elif</span> <span class="kc">None</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">())}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="p">}</span></div>
</div>
<div class="viewcode-block" id="BertAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BertAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">BertAttention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">apply_query_key_layer_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">)):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span>
<span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span> <span class="o">=</span> <span class="n">cp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span> <span class="o">=</span> <span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span> <span class="o">=</span> <span class="n">apply_query_key_layer_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="n">q_scaling</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="c1"># add quant mode to control quantization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span> <span class="o">=</span> <span class="n">quant_mode</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="o">=</span> <span class="n">relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="n">max_distance</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span> <span class="o">=</span> <span class="n">num_buckets</span>
<span class="c1"># out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size</span>
<span class="c1"># example: d_model != num_heads * head_size in Flan-T5</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="c1"># see optimize_model&#39;s add_lora for LoRA initialization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># per-layer relative attention table</span>
<span class="k">if</span> <span class="n">relative_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_attention_heads</span> <span class="o">//</span>
<span class="n">tp_size</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="BertAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BertAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">lora_layer_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_qkv&quot;</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_v&quot;</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> \
<span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">),</span> <span class="s2">&quot;q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time.&quot;</span>
<span class="k">if</span> <span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">LoraRuntimeParams</span><span class="p">(</span>
<span class="n">lora_ranks</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">lora_weights_pointers</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">)</span>
<span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">q_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span> <span class="o">+</span> <span class="n">qkv_lora</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">bert_attention_plugin</span><span class="p">:</span>
<span class="c1"># TRT plugin mode</span>
<span class="k">assert</span> <span class="n">input_lengths</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">assert</span> <span class="n">get_sm_version</span><span class="p">()</span> <span class="o">&lt;</span> <span class="mi">100</span> <span class="ow">or</span> <span class="n">get_sm_version</span><span class="p">()</span> <span class="o">&gt;=</span> <span class="mi">120</span><span class="p">,</span> \
<span class="s2">&quot;bert_attention_plugin does not support SM100&quot;</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">bert_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TRT mode</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">query_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">compute_relative_bias</span><span class="p">(</span>
<span class="n">query_len</span><span class="p">,</span>
<span class="n">key_len</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="kc">True</span><span class="p">,</span> <span class="c1"># bidirectional</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">bias</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">expand_mask</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="n">attention_scores</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">attention_mask</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span>
<span class="p">]))</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_dense&quot;</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">lora_runtime_params</span><span class="o">=</span><span class="n">dense_lora_params</span><span class="p">)</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="CogVLMAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.CogVLMAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">CogVLMAttention</span><span class="p">(</span><span class="n">Attention</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">local_layer_idx</span><span class="o">=</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="n">rotary_embedding_scaling</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">quant_mode</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vis_qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vis_dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<div class="viewcode-block" id="CogVLMAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.CogVLMAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">vision_token_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">vision_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vis_qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">language_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">vision_token_mask</span><span class="p">,</span> <span class="n">vision_qkv</span><span class="p">,</span> <span class="n">language_qkv</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb_cogvlm</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="n">position_embedding</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_kv_cache_quant</span><span class="p">(</span>
<span class="p">)</span> <span class="k">else</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_kv_cache_quant</span><span class="p">(</span>
<span class="p">)</span> <span class="k">else</span> <span class="kc">None</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">vision_dense</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vis_dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">language_dense</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">vision_token_mask</span><span class="p">,</span> <span class="n">vision_dense</span><span class="p">,</span> <span class="n">language_dense</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="DeepseekV2Attention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">DeepseekV2Attention</span><span class="p">(</span><span class="n">Attention</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">q_lora_rank</span><span class="p">,</span>
<span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="n">qk_nope_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">qk_rope_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">v_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-06</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_fast</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_slow</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale_all_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">rotary_embedding_origin_max_position</span><span class="o">=</span><span class="mi">4096</span><span class="p">,</span>
<span class="n">rotary_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">local_layer_idx</span><span class="o">=</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="n">rotary_embedding_scaling</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">enable_qkv</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="k">if</span> <span class="n">q_lora_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span> <span class="o">=</span> <span class="n">q_lora_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span> <span class="o">=</span> <span class="n">kv_lora_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">=</span> <span class="n">qk_nope_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span> <span class="o">=</span> <span class="n">qk_rope_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span> <span class="o">=</span> <span class="n">v_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="o">=</span> <span class="n">rotary_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shard_dim</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">def</span><span class="w"> </span><span class="nf">yarn_get_mscale</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">mscale</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="k">if</span> <span class="n">scale</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="mf">1.0</span>
<span class="k">return</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">mscale</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">scale</span><span class="p">)</span> <span class="o">+</span> <span class="mf">1.0</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">mscale_all_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale_all_dim&quot;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">scaling_factor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="p">[</span><span class="s2">&quot;factor&quot;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">mscale_all_dim</span><span class="p">:</span>
<span class="n">mscale</span> <span class="o">=</span> <span class="n">yarn_get_mscale</span><span class="p">(</span><span class="n">scaling_factor</span><span class="p">,</span> <span class="n">mscale_all_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">mscale</span> <span class="o">*</span> <span class="n">mscale</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_yarn</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="p">[</span><span class="s2">&quot;factor&quot;</span><span class="p">],</span>
<span class="n">rotary_embedding_origin_max_position</span><span class="p">,</span> <span class="n">rotary_embedding_beta_fast</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_slow</span><span class="p">,</span> <span class="n">rotary_embedding_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale_all_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">q_lora_rank</span> <span class="o">+</span> <span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_a_layernorm</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">q_lora_rank</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">*</span> <span class="mi">2</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_b_proj_trans</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">),</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">k_b_proj_trans</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<div class="viewcode-block" id="DeepseekV2Attention.weight_loader">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.weight_loader">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">weight_loader</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mapping</span><span class="p">:</span> <span class="n">Mapping</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">Parameter</span><span class="p">,</span>
<span class="n">loaded_weight</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="c1"># use_parallel_embedding</span>
<span class="n">tp_rank</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">sharding_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span>
<span class="n">shard_size</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">_shape</span><span class="p">[</span><span class="n">sharding_dim</span><span class="p">]</span>
<span class="n">start_idx</span> <span class="o">=</span> <span class="n">tp_rank</span> <span class="o">*</span> <span class="n">shard_size</span>
<span class="n">loaded_weight</span> <span class="o">=</span> <span class="n">loaded_weight</span><span class="o">.</span><span class="n">narrow</span><span class="p">(</span><span class="n">sharding_dim</span><span class="p">,</span> <span class="n">start_idx</span><span class="p">,</span>
<span class="n">shard_size</span><span class="p">)</span>
<span class="n">param</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">loaded_weight</span></div>
<div class="viewcode-block" id="DeepseekV2Attention.postprocess">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.postprocess">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">postprocess</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">split_matrix_tp</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">idx</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tp_size</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">v</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">)[</span><span class="n">idx</span><span class="p">]</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">dim</span><span class="p">)[</span><span class="n">idx</span><span class="p">]</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="k">if</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;q_b_proj&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">q_b_proj_weight</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span>
<span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="p">],</span>
<span class="p">)</span>
<span class="n">q_b_proj_weight</span> <span class="o">=</span> <span class="n">split_matrix_tp</span><span class="p">(</span>
<span class="n">q_b_proj_weight</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">q_b_proj_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">)</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;kv_b_proj&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">kv_b_proj_weight</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span>
<span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="p">],</span>
<span class="p">)</span>
<span class="n">kv_b_proj_weight</span> <span class="o">=</span> <span class="n">split_matrix_tp</span><span class="p">(</span>
<span class="n">kv_b_proj_weight</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">k_nope_weight</span><span class="p">,</span> <span class="n">v_weight</span> <span class="o">=</span> <span class="n">kv_b_proj_weight</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span>
<span class="n">k_nope_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">),</span>
<span class="n">v_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span> <span class="o">//</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">)</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;k_b_proj_trans&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span>
<span class="p">])</span>
<span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">kv_b_proj</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">k_nope_weight</span><span class="p">,</span> <span class="n">v_weight</span> <span class="o">=</span> <span class="n">kv_b_proj</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">k_nope_weight</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">)</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="p">}</span></div>
<div class="viewcode-block" id="DeepseekV2Attention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">SpecDecodingParams</span><span class="p">(</span>
<span class="p">)</span> <span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">spec_decoding_params</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span><span class="p">:</span>
<span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">compressed_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span><span class="p">(</span><span class="n">compressed_kv</span><span class="p">)</span>
<span class="n">input_qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">compressed_q</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">)</span><span class="o">.</span><span class="n">split</span><span class="p">([</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span>
<span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">compressed_q</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">q_a_layernorm</span><span class="p">(</span><span class="n">compressed_q</span><span class="p">)</span>
<span class="n">compressed_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span><span class="p">(</span><span class="n">compressed_kv</span><span class="p">)</span>
<span class="n">input_qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">compressed_q</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span><span class="p">,</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">input_qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_cos_sin</span><span class="o">=</span><span class="n">rotary_cos_sin</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">block_sparse_block_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span><span class="n">block_size</span><span class="p">,</span>
<span class="n">block_sparse_homo_head_pattern</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">homo_head_pattern</span><span class="p">,</span>
<span class="n">block_sparse_num_local_blocks</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">num_local_blocks</span><span class="p">,</span>
<span class="n">block_sparse_vertical_stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">vertical_stride</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="o">=</span><span class="n">spec_decoding_params</span>
<span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span><span class="n">spec_decoding_use</span><span class="p">,</span>
<span class="n">attn_logit_softcapping_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="n">is_mla_enabled_flag</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">q_lora_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">,</span>
<span class="n">kv_lora_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="n">qk_nope_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span>
<span class="n">qk_rope_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">v_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="n">fused_q_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fused_q_proj</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">q_b_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">kv_b_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span><span class="o">.</span><span class="n">value</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="DiffusersAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">DiffusersAttention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">query_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">cross_attention_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">,</span>
<span class="n">kv_heads</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">dim_head</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span>
<span class="n">dropout</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">upcast_attention</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">upcast_softmax</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">cross_attention_norm</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_norm_num_groups</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span>
<span class="n">qk_norm</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">added_kv_proj_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">added_proj_bias</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">norm_num_groups</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spatial_norm_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">out_bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">scale_qk</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">only_cross_attention</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">rescale_output_factor</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">residual_connection</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">out_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">out_context_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">context_pre_only</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">pre_only</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">is_causal</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">attn_forward_funcname</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;joint_attn_forward&#39;</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">Mapping</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attn_forward_func</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">attn_forward_funcname</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">dim_head</span> <span class="o">*</span> <span class="n">heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span> <span class="k">if</span> <span class="n">kv_heads</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">dim_head</span> <span class="o">*</span> <span class="n">kv_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">query_dim</span> <span class="o">=</span> <span class="n">query_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cross_attention</span> <span class="o">=</span> <span class="n">cross_attention_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span> <span class="o">=</span> <span class="n">cross_attention_dim</span> <span class="k">if</span> <span class="n">cross_attention_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">query_dim</span>
<span class="c1">## [TODO] Not supported yet.</span>
<span class="c1"># self.upcast_attention = upcast_attention</span>
<span class="c1"># self.upcast_softmax = upcast_softmax</span>
<span class="c1"># self.rescale_output_factor = rescale_output_factor</span>
<span class="c1"># self.residual_connection = residual_connection</span>
<span class="c1"># self.dropout = dropout</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_projections</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">query_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="o">=</span> <span class="n">context_pre_only</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pre_only</span> <span class="o">=</span> <span class="n">pre_only</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_causal</span> <span class="o">=</span> <span class="n">is_causal</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale_qk</span> <span class="o">=</span> <span class="n">scale_qk</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">dim_head</span><span class="o">**-</span><span class="mf">0.5</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_qk</span> <span class="k">else</span> <span class="mf">1.0</span>
<span class="c1"># Params for `Attention` Module</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="o">//</span> <span class="n">dim_head</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dim_head</span> <span class="o">=</span> <span class="n">dim_head</span>
<span class="c1"># default attn settings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">dim_head</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="o">=</span> <span class="n">added_kv_proj_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span> <span class="o">=</span> <span class="n">only_cross_attention</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`.&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">norm_num_groups</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">group_norm</span> <span class="o">=</span> <span class="n">GroupNorm</span><span class="p">(</span><span class="n">num_channels</span><span class="o">=</span><span class="n">query_dim</span><span class="p">,</span>
<span class="n">num_groups</span><span class="o">=</span><span class="n">norm_num_groups</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">affine</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">group_norm</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">spatial_norm_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s2">&quot;SpatialNorm is not supported yet.&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spatial_norm</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="n">elementwise_affine</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="n">elementwise_affine</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;fp32_layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm_across_heads&quot;</span><span class="p">:</span>
<span class="c1"># LTX applies qk norm across all heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span> <span class="o">*</span> <span class="n">heads</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span> <span class="o">*</span> <span class="n">kv_heads</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;layer_norm_across_heads&quot;</span><span class="p">,</span> <span class="s2">&quot;l2&quot;</span><span class="p">]:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;qk_norm </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2"> is not supported yet.&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown qk_norm: </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2">. Should be None,&#39;layer_norm&#39;,&#39;fp32_layer_norm&#39;,&#39;rms_norm&#39;&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">cross_attention_norm</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">cross_attention_norm</span> <span class="o">==</span> <span class="s2">&quot;layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">cross_attention_norm</span> <span class="o">==</span> <span class="s2">&quot;group_norm&quot;</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># The given `encoder_hidden_states` are initially of shape</span>
<span class="c1"># (batch_size, seq_len, added_kv_proj_dim) before being projected</span>
<span class="c1"># to (batch_size, seq_len, cross_attention_dim). The norm is applied</span>
<span class="c1"># before the projection, so we need to use `added_kv_proj_dim` as</span>
<span class="c1"># the number of channels for the group norm.</span>
<span class="n">norm_cross_num_channels</span> <span class="o">=</span> <span class="n">added_kv_proj_dim</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">norm_cross_num_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="n">GroupNorm</span><span class="p">(</span>
<span class="n">num_channels</span><span class="o">=</span><span class="n">norm_cross_num_channels</span><span class="p">,</span>
<span class="n">num_groups</span><span class="o">=</span><span class="n">cross_attention_norm_num_groups</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span>
<span class="n">affine</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown cross_attention_norm: </span><span class="si">{</span><span class="n">cross_attention_norm</span><span class="si">}</span><span class="s2">. Should be None, &#39;layer_norm&#39; or &#39;group_norm&#39;&quot;</span>
<span class="p">)</span>
<span class="c1"># [TODO] check `gather_output`</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_q</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">query_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_k</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_v</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_k</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_v</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">added_proj_bias</span> <span class="o">=</span> <span class="n">added_proj_bias</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">pre_only</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_out</span> <span class="o">=</span> <span class="n">ModuleList</span><span class="p">([</span>
<span class="n">RowLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">out_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_out</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">out_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;fp32_layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown qk_norm: </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2">. Should be one of `None,&#39;layer_norm&#39;,&#39;fp32_layer_norm&#39;,&#39;rms_norm&#39;`&quot;</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="kc">None</span>
<div class="viewcode-block" id="DiffusersAttention.joint_attn_forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention.joint_attn_forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">joint_attn_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">identity</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># `sample` projections.</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_q</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_k</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_v</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">head_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dim_head</span>
<span class="n">inner_dim</span> <span class="o">=</span> <span class="n">head_dim</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="c1"># `context` projections.</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_value_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_query_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_key_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">encoder_hidden_states_value_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_value_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span><span class="p">(</span>
<span class="n">encoder_hidden_states_query_proj</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span><span class="p">(</span>
<span class="n">encoder_hidden_states_key_proj</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">encoder_hidden_states_query_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">encoder_hidden_states_key_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">value</span><span class="p">,</span> <span class="n">encoder_hidden_states_value_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="c1"># Transpose from [batch_size, num_heads, seq_len, head_dim] back to</span>
<span class="c1"># [batch_size, seq_len, num_heads * head_dim] for attention plugin.</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>
<span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">inner_dim</span><span class="p">]))</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>
<span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">bert_attention_plugin</span><span class="p">:</span>
<span class="c1"># TRT plugin mode</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">==</span> <span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s2">&quot;int32&quot;</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">bert_attention</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TRT mode</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span> <span class="n">head_dim</span><span class="p">])</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># Split the attention outputs.</span>
<span class="n">slice_seq_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">residual</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">encoder_hidden_states</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">slice_seq_len</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">concat</span><span class="p">([</span>
<span class="n">batch_size</span><span class="p">,</span>
<span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">-</span>
<span class="n">slice_seq_len</span><span class="p">),</span> <span class="n">inner_dim</span>
<span class="p">]))</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">slice_seq_len</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span><span class="p">:</span>
<span class="n">encoder_hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span><span class="p">(</span><span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="c1"># linear proj</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_out</span><span class="p">[</span><span class="mi">0</span><span class="p">](</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">encoder_hidden_states</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">hidden_states</span></div>
<div class="viewcode-block" id="DiffusersAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">attn_forward_func</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="o">=</span><span class="n">encoder_hidden_states</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
</div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on June 03, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/9ae2ce6">9ae2ce6</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>