TensorRT-LLMs/cpp/tensorrt_llm/plugins/selectiveScanPlugin/selectiveScanPlugin.cpp
Kaiyu Xie 2d234357c6
Update TensorRT-LLM (#1954)
* Update TensorRT-LLM

---------

Co-authored-by: Altair-Alpha <62340011+Altair-Alpha@users.noreply.github.com>
2024-07-16 15:30:25 +08:00

572 lines
22 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "selectiveScanPlugin.h"
#include "tensorrt_llm/common/assert.h"
using namespace nvinfer1;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using tensorrt_llm::plugins::SelectiveScanPluginCreator;
using tensorrt_llm::plugins::SelectiveScanPlugin;
static char const* SELECTIVE_SCAN_PLUGIN_VERSION{"1"};
static char const* SELECTIVE_SCAN_PLUGIN_NAME{"SelectiveScan"};
PluginFieldCollection SelectiveScanPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> SelectiveScanPluginCreator::mPluginAttributes;
SelectiveScanPlugin::SelectiveScanPlugin(int dim, int dstate, int dtRank, int nHeads, int nGroups, int chunkSize,
bool deltaSoftplus, nvinfer1::DataType type, bool removePadding, bool pagedState, bool zEnabled, bool isMamba2)
: mDim(dim)
, mDState(dstate)
, mDtRank(dtRank)
, mNHeads(nHeads)
, mNGroups(nGroups)
, mChunkSize(chunkSize)
, mDeltaSoftplus(deltaSoftplus)
, mType(type)
, mRemovePadding(removePadding)
, mPagedState(pagedState)
, mZEnabled(zEnabled)
, mIsMamba2(isMamba2)
{
TLLM_CHECK_WITH_INFO((getSMVersion() >= 80) || (!mIsMamba2), "Pre SM 80 GPUs do not support Mamba2");
TLLM_CHECK_WITH_INFO((getSMVersion() >= 80) || (mType != DataType::kBF16),
"Unsupported data type, pre SM 80 GPUs do not support bfloat16");
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// Parameterized constructor
SelectiveScanPlugin::SelectiveScanPlugin(void const* data, size_t length)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
read(d, mDim);
read(d, mDState);
read(d, mDtRank);
read(d, mNHeads);
read(d, mNGroups);
read(d, mChunkSize);
read(d, mDeltaSoftplus);
read(d, mType);
read(d, mRemovePadding);
read(d, mPagedState);
read(d, mZEnabled);
read(d, mIsMamba2);
TLLM_CHECK(d == a + length);
TLLM_CHECK_WITH_INFO((getSMVersion() >= 80) || (mType != DataType::kBF16), "Unsupported data type");
TLLM_CHECK_WITH_INFO((mType == DataType::kBF16) || (mType == DataType::kFLOAT) || (mType == DataType::kHALF),
"Only support float, half, and bfloat16.");
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* SelectiveScanPlugin::clone() const noexcept
{
auto* plugin = new SelectiveScanPlugin(mDim, mDState, mDtRank, mNHeads, mNGroups, mChunkSize, mDeltaSoftplus, mType,
mRemovePadding, mPagedState, mZEnabled, mIsMamba2);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
}
// Outputs
// output_tensor: [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// state: [batch_size, dstate, dim]
nvinfer1::DimsExprs SelectiveScanPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
if (outputIndex == 0)
{
if (mIsMamba2)
{
auto ret = inputs[getInputTensorIdx()];
ret.d[mRemovePadding ? 1 : 2] = exprBuilder.constant(mDim);
return ret;
}
else
{
return inputs[getInputTensorIdx()];
}
}
return inputs[getStateIdx()];
}
bool SelectiveScanPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
if (pos == getHostRequestTypesIdx() || pos == getLastTokenIdsIdx()
|| (mRemovePadding && pos == getHostContextLengthIdx()) || (mPagedState && pos == getSlotMappingIdx()))
{
return inOut[pos].type == nvinfer1::DataType::kINT32;
}
else if (pos == getAIdx() || pos == getDeltaBiasIdx() || pos == getDIdx())
{
return (inOut[pos].type == nvinfer1::DataType::kFLOAT) && (inOut[pos].format == TensorFormat::kLINEAR);
}
else if (mPagedState && pos == getStateIdx())
{
return inOut[pos].type == nvinfer1::DataType::kINT64;
}
else
{
return (inOut[pos].type == mType) && (inOut[pos].format == TensorFormat::kLINEAR);
}
}
void SelectiveScanPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
}
size_t SelectiveScanPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
if (!mIsMamba2)
return 0;
int const NUM_BUFFERS = 5;
size_t workspaces[NUM_BUFFERS];
if (mRemovePadding)
{
int B = inputs[getLastTokenIdsIdx()].dims.d[0];
int BxL = inputs[getInputTensorIdx()].dims.d[0]; // num_tokens
int H = mNHeads;
int P = mDim / H;
int G = mNGroups;
int N = mDState;
int Q = mChunkSize;
int BxC = (BxL + Q - 1) / Q + B;
workspaces[0] = BxC * H * N * P * 2; // g_mxOs_
workspaces[1] = BxC * H * N * P * 4; // g_mxSt_ in float
workspaces[2] = BxC * H * Q * 4; // g_mxdc_ in float
workspaces[3] = BxC * H * Q * 4; // g_mxdA_ in float
workspaces[4] = BxC * G * Q * Q * 2; // g_mxCB_
}
else
{
int B = inputs[getInputTensorIdx()].dims.d[0];
int L = inputs[getInputTensorIdx()].dims.d[1];
int H = mNHeads;
int P = mDim / H;
int G = mNGroups;
int N = mDState;
int Q = mChunkSize;
int C = (L + Q - 1) / Q;
workspaces[0] = B * C * H * N * P * 2; // g_mxOs_
workspaces[1] = B * C * H * N * P * 4; // g_mxSt_ in float
workspaces[2] = B * C * H * Q * 4; // g_mxdc_ in float
workspaces[3] = B * C * H * Q * 4; // g_mxdA_ in float
workspaces[4] = B * C * G * Q * Q * 2; // g_mxCB_
}
return calculateTotalWorkspaceSize(workspaces, NUM_BUFFERS);
}
void SelectiveScanPlugin::setSSMParams(SSMParamsBase& params, const size_t batch, const size_t dim,
const size_t maxSeqLen, const size_t dstate, const size_t dtRank, const size_t nHeads, const size_t nGroups,
const size_t chunkSize, void* statePtr, void const* x, void const* delta, void const* deltaBias, void const* A,
void const* BC, void const* D, void const* z, void const* osPtr, void const* stPtr, void const* dcPtr,
void const* dAPtr, void const* cbPtr, int const* lastTokenIds, int const* slotMapping, void* out,
bool deltaSoftplus, bool removePadding)
{
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.max_seqlen = maxSeqLen;
params.dstate = dstate;
params.dt_rank = dtRank;
params.nheads = nHeads;
params.ngroups = nGroups;
params.chunk_size = chunkSize;
params.delta_softplus = deltaSoftplus;
params.remove_padding = removePadding;
params.is_mamab2 = mIsMamba2;
// Set the pointers and strides.
params.u_ptr = const_cast<void*>(x);
params.delta_ptr = const_cast<void*>(delta);
params.A_ptr = const_cast<void*>(A);
params.BC_ptr = const_cast<void*>(BC);
params.D_ptr = const_cast<void*>(D);
params.delta_bias_ptr = const_cast<void*>(deltaBias);
params.out_ptr = out;
params.x_ptr = statePtr;
params.z_ptr = const_cast<void*>(z);
params.Os_ptr = const_cast<void*>(osPtr);
params.St_ptr = const_cast<void*>(stPtr);
params.dc_ptr = const_cast<void*>(dcPtr);
params.dA_ptr = const_cast<void*>(dAPtr);
params.CB_ptr = const_cast<void*>(cbPtr);
params.last_token_ids_ptr = lastTokenIds;
params.slot_mapping_ptr = slotMapping;
}
template <typename T>
int SelectiveScanPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream)
{
// inputs
// 0. input_tensor [batch_size, max_seq_len, dim] or [num_tokens, dim]
// 1. state mamba: [batch_size, dstate, dim] or host [1] containing only pointer for paged_state
// mamba2: [batch_size, nheads, dstate, dim] or host [1] containing only pointer for paged_state
// 2. delta, mamba: [batch_size, seq_len, dim] or [num_tokens, dim] for remove_input_padding
// mamba2: [batch_size, seq_len, nheads] or [num_tokens, nheads] for remove_input_padding
// 3. delta_bias, [dim] for mamba, [nheads] for mamba2
// 4. A, [dstate, dim] for mamba, [nheads] for mamba2
// 5. BC, mamba: [batch_size, seq_len, dstate * 2] or [num_tokens, dstate * 2] for remove_input_padding
// mamba2: [batch_size, seq_len, ngroups * dstate * 2] or [num_tokens, ngroups * dstate * 2] for
// remove_input_padding
// 6. D, [dim] for mamba, [nheads] for mamba2
// 7. host_request_types [batch_size] int32. 0: context; 1: generation.
// 8. last_token_ids [batch_size] int32
// 9. host_context_lengths [batch_size] int32, optional for remove_input_padding
// 10. state_slot_mapping [batch_size] int32, optional for paged state
// 11. z [batch_size, max_seq_len, dim] or [num_tokens, dim]
// outputs
// 0. output_tensor [batch_size, max_seq_len, dim] or [num_tokens, dim]
// 1. state, [batch_size, dstate, dim] for mamba, [batch_size, nheads, dstate, dim] for mamba2
auto const batch_size = inputDesc[getHostRequestTypesIdx()].dims.d[0];
int max_seq_len;
if (mRemovePadding)
{
int const* host_context_length = static_cast<int const*>(inputs[getHostContextLengthIdx()]);
max_seq_len = *std::max_element(host_context_length, host_context_length + batch_size);
}
else
{
max_seq_len = inputDesc[getInputTensorIdx()].dims.d[1];
}
// only support context or generation, not for both of them
RequestType const* reqTypes = static_cast<RequestType const*>(inputs[getHostRequestTypesIdx()]);
SSMParamsBase ssm_params;
int const* slotMapping = mPagedState ? static_cast<int const*>(inputs[getSlotMappingIdx()]) : nullptr;
void const* z = mZEnabled ? inputs[getZIdx()] : nullptr;
void* statePtr = mPagedState ? *reinterpret_cast<void**>(const_cast<void*>(inputs[getStateIdx()])) : outputs[1];
// Workspace pointer shift
int8_t* workspace_byte_ptr = reinterpret_cast<int8_t*>(workspace);
size_t offset = 0;
T* mxOs = nullptr;
float* mxSt = nullptr;
float* mxdc = nullptr;
float* mxdA = nullptr;
T* mxCB = nullptr;
if (!mIsMamba2 || reqTypes[0] == RequestType::kGENERATION) /* no workspace needed */
;
else if (mRemovePadding)
{
int B = inputDesc[getLastTokenIdsIdx()].dims.d[0];
int BxL = inputDesc[getInputTensorIdx()].dims.d[0]; // num_tokens
int H = mNHeads;
int P = mDim / H;
int G = mNGroups;
int N = mDState;
int Q = mChunkSize;
int BxC = (BxL + Q - 1) / Q + B;
mxOs = reinterpret_cast<T*>(nextWorkspacePtr(workspace_byte_ptr, offset, BxC * H * N * P * 2));
mxSt = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, BxC * H * N * P * 4));
mxdc = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, BxC * H * Q * 4));
mxdA = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, BxC * H * Q * 4));
mxCB = reinterpret_cast<T*>(nextWorkspacePtr(workspace_byte_ptr, offset, BxC * G * Q * Q * 2));
}
else
{
int B = inputDesc[getInputTensorIdx()].dims.d[0];
int L = inputDesc[getInputTensorIdx()].dims.d[1];
int H = mNHeads;
int P = mDim / H;
int G = mNGroups;
int N = mDState;
int Q = mChunkSize;
int C = (L + Q - 1) / Q;
mxOs = reinterpret_cast<T*>(nextWorkspacePtr(workspace_byte_ptr, offset, B * C * H * N * P * 2));
mxSt = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, B * C * H * N * P * 4));
mxdc = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, B * C * H * Q * 4));
mxdA = reinterpret_cast<float*>(nextWorkspacePtr(workspace_byte_ptr, offset, B * C * H * Q * 4));
mxCB = reinterpret_cast<T*>(nextWorkspacePtr(workspace_byte_ptr, offset, B * C * G * Q * Q * 2));
}
setSSMParams(ssm_params, batch_size, mDim, max_seq_len, mDState, mDtRank, mNHeads, mNGroups, mChunkSize, statePtr,
inputs[getInputTensorIdx()], inputs[getDeltaIdx()], inputs[getDeltaBiasIdx()], inputs[getAIdx()],
inputs[getBCIdx()], inputs[getDIdx()], z, mxOs, mxSt, mxdc, mxdA, mxCB,
static_cast<int const*>(inputs[getLastTokenIdsIdx()]), slotMapping, outputs[0], mDeltaSoftplus, mRemovePadding);
if (reqTypes[0] == RequestType::kCONTEXT)
{
if (mIsMamba2)
{
invokeChunkScan<T, float>(ssm_params, stream);
}
else
{
invokeSelectiveScan<T, float>(ssm_params, stream);
}
}
else if (reqTypes[0] == RequestType::kGENERATION)
{
invokeSelectiveScanUpdate<T, float>(ssm_params, stream);
}
return 0;
}
int SelectiveScanPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (isBuilding())
{
return 0;
}
if (mType == DataType::kHALF)
{
return enqueueImpl<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
else if (mType == DataType::kFLOAT)
{
return enqueueImpl<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#ifdef ENABLE_BF16
else if (mType == DataType::kBF16)
{
return enqueueImpl<__nv_bfloat16>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
}
#endif
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType SelectiveScanPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
if (index == 0)
{
return inputTypes[getInputTensorIdx()];
}
else
{
return inputTypes[getStateIdx()];
}
}
// IPluginV2 Methods
char const* SelectiveScanPlugin::getPluginType() const noexcept
{
return SELECTIVE_SCAN_PLUGIN_NAME;
}
char const* SelectiveScanPlugin::getPluginVersion() const noexcept
{
return SELECTIVE_SCAN_PLUGIN_VERSION;
}
int SelectiveScanPlugin::getNbOutputs() const noexcept
{
return mPagedState ? 1 : 2;
}
int SelectiveScanPlugin::initialize() noexcept
{
return 0;
}
void SelectiveScanPlugin::terminate() noexcept {}
size_t SelectiveScanPlugin::getSerializationSize() const noexcept
{
return sizeof(mDim) + sizeof(mDState) + sizeof(mDtRank) + sizeof(mNHeads) + sizeof(mNGroups) + sizeof(mChunkSize)
+ sizeof(mDeltaSoftplus) + sizeof(mType) + sizeof(mRemovePadding) + sizeof(mPagedState) + sizeof(mZEnabled)
+ sizeof(mIsMamba2);
}
void SelectiveScanPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mDim);
write(d, mDState);
write(d, mDtRank);
write(d, mNHeads);
write(d, mNGroups);
write(d, mChunkSize);
write(d, mDeltaSoftplus);
write(d, mType);
write(d, mRemovePadding);
write(d, mPagedState);
write(d, mZEnabled);
write(d, mIsMamba2);
assert(d == a + getSerializationSize());
}
void SelectiveScanPlugin::destroy() noexcept
{
delete this;
}
///////////////
SelectiveScanPluginCreator::SelectiveScanPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("dim", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("dstate", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("dt_rank", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("nheads", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("ngroups", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("chunk_size", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("delta_softplus", nullptr, PluginFieldType::kINT8, 1));
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("remove_input_padding", nullptr, PluginFieldType::kINT8, 1));
mPluginAttributes.emplace_back(PluginField("paged_state", nullptr, PluginFieldType::kINT8, 1));
mPluginAttributes.emplace_back(PluginField("z_enabled", nullptr, PluginFieldType::kINT8, 1));
mPluginAttributes.emplace_back(PluginField("is_mamba2", nullptr, PluginFieldType::kINT8, 1));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* SelectiveScanPluginCreator::getPluginName() const noexcept
{
return SELECTIVE_SCAN_PLUGIN_NAME;
}
char const* SelectiveScanPluginCreator::getPluginVersion() const noexcept
{
return SELECTIVE_SCAN_PLUGIN_VERSION;
}
PluginFieldCollection const* SelectiveScanPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* SelectiveScanPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
int dim, dstate, dtRank, nHeads, nGroups, chunkSize;
bool deltaSoftplus, removePadding, pagedState, zEnabled, isMamab2;
nvinfer1::DataType type;
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "dim"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dim = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "dstate"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dstate = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "dt_rank"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
dtRank = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "nheads"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
nHeads = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "ngroups"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
nGroups = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "chunk_size"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
chunkSize = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
}
else if (!strcmp(attrName, "delta_softplus"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
deltaSoftplus = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "remove_input_padding"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
removePadding = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "paged_state"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
pagedState = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "z_enabled"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
zEnabled = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
else if (!strcmp(attrName, "is_mamba2"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT8);
isMamab2 = static_cast<bool>(*(static_cast<bool const*>(fields[i].data)));
}
}
try
{
auto* obj = new SelectiveScanPlugin(dim, dstate, dtRank, nHeads, nGroups, chunkSize, deltaSoftplus, type,
removePadding, pagedState, zEnabled, isMamab2);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* SelectiveScanPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call SelectiveScanPlugin::destroy()
try
{
auto* obj = new SelectiveScanPlugin(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}