mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
382 lines
14 KiB
C++
382 lines
14 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/executor/executor.h"
|
|
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
|
|
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
|
|
#include <cxxopts.hpp>
|
|
|
|
namespace tle = tensorrt_llm::executor;
|
|
|
|
namespace fs = std::filesystem;
|
|
|
|
struct RuntimeOptions
|
|
{
|
|
std::string trtEnginePath;
|
|
std::string inputTokensCsvFile;
|
|
std::string outputTokensCsvFile;
|
|
|
|
bool streaming;
|
|
bool excludeInputFromOutput;
|
|
tle::SizeType32 maxNewTokens;
|
|
tle::SizeType32 beamWidth;
|
|
tle::SizeType32 timeoutMs;
|
|
|
|
bool useOrchestratorMode;
|
|
std::string workerExecutablePath;
|
|
bool spawnProcesses;
|
|
};
|
|
|
|
// Utility function to parse input arguments
|
|
RuntimeOptions parseArgs(int argc, char* argv[]);
|
|
|
|
// Function that enqueues requests
|
|
std::vector<std::pair<int32_t, tle::IdType>> enqueueRequests(
|
|
RuntimeOptions const& runtimeOpts, std::deque<tle::Executor>& executors);
|
|
|
|
// Function that waits for responses and stores output tokens
|
|
std::map<std::pair<int32_t, tle::IdType>, tle::BeamTokens> waitForResponses(RuntimeOptions const& runtimeOpts,
|
|
std::vector<std::pair<int32_t, tle::IdType>> const& instanceRequestIds, std::deque<tle::Executor>& executors);
|
|
|
|
// Utility function to read input tokens from csv file
|
|
std::vector<tle::VecTokens> readInputTokens(std::string const& path);
|
|
|
|
// Utility function to write output tokens from csv file
|
|
void writeOutputTokens(std::string const& path, std::vector<std::pair<int32_t, tle::IdType>>& requestIds,
|
|
std::map<std::pair<int32_t, tle::IdType>, tle::BeamTokens> const& outputTokens, tle::SizeType32 beamWidth);
|
|
|
|
// Main
|
|
int main(int argc, char* argv[])
|
|
{
|
|
// Register the TRT-LLM plugins
|
|
initTrtLlmPlugins();
|
|
|
|
auto runtimeOpts = parseArgs(argc, argv);
|
|
|
|
// Create the executor for this engine
|
|
auto executorConfig = tle::ExecutorConfig(runtimeOpts.beamWidth);
|
|
|
|
tle::KvCacheConfig kvCacheConfig{false, 10000};
|
|
executorConfig.setKvCacheConfig(kvCacheConfig);
|
|
|
|
bool isOrchestrator = true;
|
|
if (!runtimeOpts.spawnProcesses)
|
|
{
|
|
tensorrt_llm::mpi::initialize(tensorrt_llm::mpi::MpiThreadSupport::THREAD_MULTIPLE);
|
|
int myRank = tensorrt_llm::mpi::MpiComm::world().getRank();
|
|
isOrchestrator = (myRank == 0);
|
|
}
|
|
|
|
auto orchestratorConfig = tle::OrchestratorConfig(
|
|
isOrchestrator, runtimeOpts.workerExecutablePath, nullptr, runtimeOpts.spawnProcesses);
|
|
auto parallelConfig = tle::ParallelConfig(tle::CommunicationType::kMPI, tle::CommunicationMode::kORCHESTRATOR,
|
|
std::nullopt, std::nullopt, orchestratorConfig);
|
|
executorConfig.setParallelConfig(parallelConfig);
|
|
|
|
int numInstances = 3;
|
|
if (!runtimeOpts.spawnProcesses)
|
|
{
|
|
// Keep one rank for orchestrator
|
|
numInstances = tensorrt_llm::mpi::MpiComm::world().getSize() - 1;
|
|
}
|
|
std::deque<tle::Executor> executors;
|
|
for (int instanceId = 0; instanceId < numInstances; ++instanceId)
|
|
{
|
|
auto executorConfigTmp = executorConfig;
|
|
// Set the rank id participating in each model instance
|
|
if (!runtimeOpts.spawnProcesses)
|
|
{
|
|
parallelConfig.setParticipantIds({instanceId + 1});
|
|
}
|
|
executorConfigTmp.setParallelConfig(parallelConfig);
|
|
executors.emplace_back(runtimeOpts.trtEnginePath, tle::ModelType::kDECODER_ONLY, executorConfigTmp);
|
|
}
|
|
|
|
// Only orchestrator rank (rank 0) will enter
|
|
if (isOrchestrator)
|
|
{
|
|
// Create the requests
|
|
auto instanceRequestIds = enqueueRequests(runtimeOpts, executors);
|
|
|
|
// Wait for responses and store output tokens
|
|
auto outputTokens = waitForResponses(runtimeOpts, instanceRequestIds, executors);
|
|
|
|
// Write output tokens csv file
|
|
TLLM_LOG_INFO("Writing output tokens to %s", runtimeOpts.outputTokensCsvFile.c_str());
|
|
writeOutputTokens(runtimeOpts.outputTokensCsvFile, instanceRequestIds, outputTokens, runtimeOpts.beamWidth);
|
|
}
|
|
TLLM_LOG_INFO("Exiting.");
|
|
return 0;
|
|
}
|
|
|
|
RuntimeOptions parseArgs(int argc, char* argv[])
|
|
{
|
|
RuntimeOptions runtimeOpts;
|
|
|
|
cxxopts::Options options(argv[0], "Example that demonstrates how to use the Executor API");
|
|
options.add_options()("h,help", "Print usage");
|
|
options.add_options()("engine_dir", "Directory that store the engines.", cxxopts::value<std::string>());
|
|
options.add_options()("beam_width", "The beam width", cxxopts::value<int>()->default_value("1"));
|
|
options.add_options()("streaming", "Operate in streaming mode", cxxopts::value<bool>()->default_value("false"));
|
|
options.add_options()("exclude_input_from_output",
|
|
"Exclude input tokens when writing output tokens. Only has effect for streaming = false. For streaming = true, "
|
|
"output tokens are not included.",
|
|
cxxopts::value<bool>()->default_value("false"));
|
|
options.add_options()(
|
|
"max_new_tokens", "The maximum number of tokens to generate", cxxopts::value<int>()->default_value("10"));
|
|
options.add_options()(
|
|
"input_tokens_csv_file", "Path to a csv file that contains input tokens", cxxopts::value<std::string>());
|
|
options.add_options()("output_tokens_csv_file", "Path to a csv file that will contain the output tokens",
|
|
cxxopts::value<std::string>()->default_value("outputTokens.csv"));
|
|
options.add_options()("timeout_ms", "The maximum time to wait for all responses, in milliseconds.",
|
|
cxxopts::value<int>()->default_value("10000"));
|
|
options.add_options()("worker_executable_path", "The location of the worker executable.",
|
|
cxxopts::value<std::string>()->default_value(""));
|
|
options.add_options()("spawn_processes",
|
|
"Flag that controls if MPI_Comm_spawn should be used to spawn worker processes, or if they have been launched "
|
|
"with mpi already.",
|
|
cxxopts::value<bool>()->default_value("true"));
|
|
|
|
auto parsedOptions = options.parse(argc, argv);
|
|
|
|
// Argument: help
|
|
if (parsedOptions.count("help"))
|
|
{
|
|
TLLM_LOG_ERROR(options.help());
|
|
exit(0);
|
|
}
|
|
|
|
// Argument: Engine directory
|
|
if (!parsedOptions.count("engine_dir"))
|
|
{
|
|
TLLM_LOG_ERROR(options.help());
|
|
TLLM_LOG_ERROR("Please specify engine directory.");
|
|
exit(1);
|
|
}
|
|
runtimeOpts.trtEnginePath = parsedOptions["engine_dir"].as<std::string>();
|
|
if (!fs::exists(runtimeOpts.trtEnginePath) || !fs::is_directory(runtimeOpts.trtEnginePath))
|
|
{
|
|
TLLM_LOG_ERROR("Engine directory doesn't exist.");
|
|
exit(1);
|
|
}
|
|
|
|
// Argument: Input tokens csv file
|
|
if (!parsedOptions.count("input_tokens_csv_file"))
|
|
{
|
|
TLLM_LOG_ERROR(options.help());
|
|
TLLM_LOG_ERROR("Please specify input_tokens_csv_file");
|
|
exit(1);
|
|
}
|
|
runtimeOpts.inputTokensCsvFile = parsedOptions["input_tokens_csv_file"].as<std::string>();
|
|
runtimeOpts.streaming = parsedOptions["streaming"].as<bool>();
|
|
runtimeOpts.excludeInputFromOutput = parsedOptions["exclude_input_from_output"].as<bool>();
|
|
runtimeOpts.maxNewTokens = parsedOptions["max_new_tokens"].as<int>();
|
|
runtimeOpts.beamWidth = parsedOptions["beam_width"].as<int>();
|
|
runtimeOpts.timeoutMs = parsedOptions["timeout_ms"].as<int>();
|
|
runtimeOpts.outputTokensCsvFile = parsedOptions["output_tokens_csv_file"].as<std::string>();
|
|
|
|
runtimeOpts.workerExecutablePath = parsedOptions["worker_executable_path"].as<std::string>();
|
|
runtimeOpts.spawnProcesses = parsedOptions["spawn_processes"].as<bool>();
|
|
|
|
return runtimeOpts;
|
|
}
|
|
|
|
std::vector<std::pair<int32_t, tle::IdType>> enqueueRequests(
|
|
RuntimeOptions const& runtimeOpts, std::deque<tle::Executor>& executors)
|
|
{
|
|
tle::OutputConfig outputConfig;
|
|
outputConfig.excludeInputFromOutput = runtimeOpts.excludeInputFromOutput;
|
|
tle::SamplingConfig samplingConfig(runtimeOpts.beamWidth);
|
|
|
|
TLLM_LOG_INFO("Reading input tokens from %s", runtimeOpts.inputTokensCsvFile.c_str());
|
|
auto inputTokens = readInputTokens(runtimeOpts.inputTokensCsvFile);
|
|
TLLM_LOG_INFO("Number of requests: %d", inputTokens.size());
|
|
|
|
std::vector<tle::Request> requests;
|
|
for (auto& tokens : inputTokens)
|
|
{
|
|
TLLM_LOG_INFO("Creating request with %d input tokens", tokens.size());
|
|
requests.emplace_back(
|
|
std::move(tokens), runtimeOpts.maxNewTokens, runtimeOpts.streaming, samplingConfig, outputConfig);
|
|
}
|
|
|
|
// Enqueue the requests
|
|
// Round robin over instances
|
|
std::vector<std::pair<int32_t, tle::IdType>> instanceRequestIds;
|
|
for (size_t req = 0; req < requests.size(); ++req)
|
|
{
|
|
auto instanceId = req % executors.size();
|
|
TLLM_LOG_INFO("Enqueuing request %d for instance %d", req, instanceId);
|
|
auto requestId = executors.at(instanceId).enqueueRequest(requests[req]);
|
|
instanceRequestIds.emplace_back(instanceId, requestId);
|
|
}
|
|
TLLM_LOG_INFO("Enqueued %d requests", instanceRequestIds.size());
|
|
return instanceRequestIds;
|
|
}
|
|
|
|
std::map<std::pair<int32_t, tle::IdType>, tle::BeamTokens> waitForResponses(RuntimeOptions const& runtimeOpts,
|
|
std::vector<std::pair<int32_t, tle::IdType>> const& instanceRequestIds, std::deque<tle::Executor>& executors)
|
|
{
|
|
// Map that will be used to store output tokens for requests
|
|
int numRequests = 0;
|
|
std::map<std::pair<int32_t, tle::IdType>, tle::BeamTokens> outputTokens;
|
|
for (auto instanceRequestId : instanceRequestIds)
|
|
{
|
|
outputTokens[instanceRequestId] = tle::BeamTokens(runtimeOpts.beamWidth);
|
|
numRequests++;
|
|
}
|
|
|
|
tle::SizeType32 numFinished{0};
|
|
tle::SizeType32 iter{0};
|
|
|
|
// Get the new tokens for each request
|
|
while (numFinished < numRequests && iter < runtimeOpts.timeoutMs)
|
|
{
|
|
std::chrono::milliseconds waitTime(1);
|
|
for (size_t instanceId = 0; instanceId < executors.size(); ++instanceId)
|
|
{
|
|
// Wait for any response for given instance
|
|
auto responses = executors.at(instanceId).awaitResponses(waitTime);
|
|
// Loop over the responses
|
|
for (auto const& response : responses)
|
|
{
|
|
auto requestId = response.getRequestId();
|
|
if (!response.hasError())
|
|
{
|
|
auto result = response.getResult();
|
|
numFinished += result.isFinal;
|
|
TLLM_LOG_INFO("Number of finished requests: %d", numFinished);
|
|
|
|
for (tle::SizeType32 beam = 0; beam < runtimeOpts.beamWidth; ++beam)
|
|
{
|
|
auto& respTokens = result.outputTokenIds.at(beam);
|
|
|
|
TLLM_LOG_INFO("Got %d tokens for beam %d for requestId %d", respTokens.size(), beam, requestId);
|
|
|
|
// Store the output tokens for that request id
|
|
auto& outTokens = outputTokens.at(std::make_pair(instanceId, requestId)).at(beam);
|
|
outTokens.insert(outTokens.end(), std::make_move_iterator(respTokens.begin()),
|
|
std::make_move_iterator(respTokens.end()));
|
|
}
|
|
if (result.isFinal)
|
|
{
|
|
TLLM_LOG_INFO("Request id %lu is completed.", requestId);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Allow response with error only if awaitResponse processed a terminated request id
|
|
std::string err = "ReqId " + std::to_string(response.getRequestId())
|
|
+ " has already been processed and was terminated.";
|
|
if (response.getErrorMsg() != err)
|
|
{
|
|
TLLM_THROW("Request id %lu encountered error: %s", requestId, response.getErrorMsg().c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
++iter;
|
|
}
|
|
if (iter == runtimeOpts.timeoutMs)
|
|
{
|
|
TLLM_THROW("Timeout exceeded.");
|
|
}
|
|
|
|
return outputTokens;
|
|
}
|
|
|
|
std::vector<tle::VecTokens> readInputTokens(std::string const& path)
|
|
{
|
|
std::vector<tle::VecTokens> data;
|
|
std::ifstream file(path);
|
|
|
|
if (!file.is_open())
|
|
{
|
|
auto const err = std::string{"Failed to open file: "} + path;
|
|
TLLM_LOG_ERROR(err);
|
|
TLLM_THROW(err);
|
|
}
|
|
|
|
std::string line;
|
|
while (std::getline(file, line))
|
|
{
|
|
std::vector<tle::TokenIdType> row;
|
|
std::stringstream ss(line);
|
|
std::string token;
|
|
|
|
while (std::getline(ss, token, ','))
|
|
{
|
|
try
|
|
{
|
|
row.push_back(std::stoi(token));
|
|
}
|
|
catch (std::invalid_argument const& e)
|
|
{
|
|
TLLM_LOG_ERROR("Invalid argument: %s", e.what());
|
|
}
|
|
catch (std::out_of_range const& e)
|
|
{
|
|
TLLM_LOG_ERROR("Out of range: %s", e.what());
|
|
}
|
|
}
|
|
|
|
data.push_back(row);
|
|
}
|
|
|
|
file.close();
|
|
return data;
|
|
}
|
|
|
|
void writeOutputTokens(std::string const& path, std::vector<std::pair<int32_t, tle::IdType>>& instanceRequestIds,
|
|
std::map<std::pair<int32_t, tle::IdType>, tle::BeamTokens> const& outputTokens, tle::SizeType32 beamWidth)
|
|
{
|
|
std::ofstream file(path);
|
|
|
|
if (!file.is_open())
|
|
{
|
|
TLLM_LOG_ERROR("Failed to open file %s", path.c_str());
|
|
return;
|
|
}
|
|
|
|
for (auto instanceRequestId : instanceRequestIds)
|
|
{
|
|
auto const& outTokens = outputTokens.at(instanceRequestId);
|
|
for (tle::SizeType32 beam = 0; beam < beamWidth; ++beam)
|
|
{
|
|
auto const& beamTokens = outTokens.at(beam);
|
|
for (size_t i = 0; i < beamTokens.size(); ++i)
|
|
{
|
|
file << beamTokens[i];
|
|
if (i < beamTokens.size() - 1)
|
|
{
|
|
file << ", ";
|
|
}
|
|
}
|
|
file << "\n";
|
|
}
|
|
}
|
|
|
|
file.close();
|
|
}
|