TensorRT-LLMs/llm-api-examples/llm_guided_decoding.html
Kaiyu Xie 2e816e764a
Update gh-pages (#3396)
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2025-04-09 12:24:57 +08:00

614 lines
36 KiB
HTML

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Generate text with guided decoding &#8212; tensorrt_llm</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'llm-api-examples/llm_guided_decoding';</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Generate text" href="llm_inference.html" />
<link rel="prev" title="Generate Text in Streaming" href="llm_inference_async_streaming.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="tensorrt_llm - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="tensorrt_llm - Home"/>
<p class="title logo__title">tensorrt_llm</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="tensorrt_llm - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="tensorrt_llm - Home"/>
<p class="title logo__title">tensorrt_llm</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">LLM Examples Introduction</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_logits_processor.html">Control generated text using logits post processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="customization.html">Common Customizations</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="llm_api_examples.html">Examples</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async.html">Generate Text Asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_logits_processor.html">Control generated text using logits post processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_quantization.html">Generation with Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_customize.html">Generate text with customization</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-serve.html">trtllm-serve</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html">Inference Request</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">LLM Examples Introduction</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Generate text with guided decoding</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="generate-text-with-guided-decoding">
<h1>Generate text with guided decoding<a class="headerlink" href="#generate-text-with-guided-decoding" title="Link to this heading">#</a></h1>
<p>Source <a class="github reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llm-api/llm_guided_decoding.py">NVIDIA/TensorRT-LLM</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="linenos"> 1</span><span class="c1">### Generate text with guided decoding</span>
<span class="linenos"> 2</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
<span class="linenos"> 3</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi</span><span class="w"> </span><span class="kn">import</span> <span class="n">BuildConfig</span><span class="p">,</span> <span class="n">GuidedDecodingParams</span>
<span class="linenos"> 4</span>
<span class="linenos"> 5</span>
<span class="linenos"> 6</span><span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
<span class="linenos"> 7</span>
<span class="linenos"> 8</span> <span class="c1"># TODO(jiahanc): Clean up build_config when use_paged_context_fmha is by default enabled</span>
<span class="linenos"> 9</span> <span class="n">build_config</span> <span class="o">=</span> <span class="n">BuildConfig</span><span class="p">()</span>
<span class="linenos">10</span> <span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">use_paged_context_fmha</span> <span class="o">=</span> <span class="kc">True</span>
<span class="linenos">11</span>
<span class="linenos">12</span> <span class="c1"># Specify the guided decoding backend; xgrammar is supported currently.</span>
<span class="linenos">13</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span><span class="p">,</span>
<span class="linenos">14</span> <span class="n">build_config</span><span class="o">=</span><span class="n">build_config</span><span class="p">,</span>
<span class="linenos">15</span> <span class="n">guided_decoding_backend</span><span class="o">=</span><span class="s1">&#39;xgrammar&#39;</span><span class="p">)</span>
<span class="linenos">16</span>
<span class="linenos">17</span> <span class="c1"># An example from json-mode-eval</span>
<span class="linenos">18</span> <span class="n">schema</span> <span class="o">=</span> <span class="s1">&#39;{&quot;title&quot;: &quot;WirelessAccessPoint&quot;, &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: {&quot;ssid&quot;: {&quot;title&quot;: &quot;SSID&quot;, &quot;type&quot;: &quot;string&quot;}, &quot;securityProtocol&quot;: {&quot;title&quot;: &quot;SecurityProtocol&quot;, &quot;type&quot;: &quot;string&quot;}, &quot;bandwidth&quot;: {&quot;title&quot;: &quot;Bandwidth&quot;, &quot;type&quot;: &quot;string&quot;}}, &quot;required&quot;: [&quot;ssid&quot;, &quot;securityProtocol&quot;, &quot;bandwidth&quot;]}&#39;</span>
<span class="linenos">19</span>
<span class="linenos">20</span> <span class="n">prompt</span> <span class="o">=</span> <span class="p">[{</span>
<span class="linenos">21</span> <span class="s1">&#39;role&#39;</span><span class="p">:</span>
<span class="linenos">22</span> <span class="s1">&#39;system&#39;</span><span class="p">,</span>
<span class="linenos">23</span> <span class="s1">&#39;content&#39;</span><span class="p">:</span>
<span class="linenos">24</span> <span class="s2">&quot;You are a helpful assistant that answers in JSON. Here&#39;s the json schema you must adhere to:</span><span class="se">\n</span><span class="s2">&lt;schema&gt;</span><span class="se">\n</span><span class="s2">{&#39;title&#39;: &#39;WirelessAccessPoint&#39;, &#39;type&#39;: &#39;object&#39;, &#39;properties&#39;: {&#39;ssid&#39;: {&#39;title&#39;: &#39;SSID&#39;, &#39;type&#39;: &#39;string&#39;}, &#39;securityProtocol&#39;: {&#39;title&#39;: &#39;SecurityProtocol&#39;, &#39;type&#39;: &#39;string&#39;}, &#39;bandwidth&#39;: {&#39;title&#39;: &#39;Bandwidth&#39;, &#39;type&#39;: &#39;string&#39;}}, &#39;required&#39;: [&#39;ssid&#39;, &#39;securityProtocol&#39;, &#39;bandwidth&#39;]}</span><span class="se">\n</span><span class="s2">&lt;/schema&gt;</span><span class="se">\n</span><span class="s2">&quot;</span>
<span class="linenos">25</span> <span class="p">},</span> <span class="p">{</span>
<span class="linenos">26</span> <span class="s1">&#39;role&#39;</span><span class="p">:</span>
<span class="linenos">27</span> <span class="s1">&#39;user&#39;</span><span class="p">,</span>
<span class="linenos">28</span> <span class="s1">&#39;content&#39;</span><span class="p">:</span>
<span class="linenos">29</span> <span class="s2">&quot;I&#39;m currently configuring a wireless access point for our office network and I need to generate a JSON object that accurately represents its settings. The access point&#39;s SSID should be &#39;OfficeNetSecure&#39;, it uses WPA2-Enterprise as its security protocol, and it&#39;s capable of a bandwidth of up to 1300 Mbps on the 5 GHz band. This JSON object will be used to document our network configurations and to automate the setup process for additional access points in the future. Please provide a JSON object that includes these details.&quot;</span>
<span class="linenos">30</span> <span class="p">}]</span>
<span class="linenos">31</span> <span class="n">prompt</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">tokenizer</span><span class="o">.</span><span class="n">apply_chat_template</span><span class="p">(</span><span class="n">prompt</span><span class="p">,</span> <span class="n">tokenize</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="linenos">32</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="linenos">33</span>
<span class="linenos">34</span> <span class="n">output</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompt</span><span class="p">,</span> <span class="n">sampling_params</span><span class="o">=</span><span class="n">SamplingParams</span><span class="p">(</span><span class="n">max_tokens</span><span class="o">=</span><span class="mi">50</span><span class="p">))</span>
<span class="linenos">35</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Generated text (unguided): </span><span class="si">{</span><span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="linenos">36</span>
<span class="linenos">37</span> <span class="n">output</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span>
<span class="linenos">38</span> <span class="n">prompt</span><span class="p">,</span>
<span class="linenos">39</span> <span class="n">sampling_params</span><span class="o">=</span><span class="n">SamplingParams</span><span class="p">(</span>
<span class="linenos">40</span> <span class="n">max_tokens</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">guided_decoding</span><span class="o">=</span><span class="n">GuidedDecodingParams</span><span class="p">(</span><span class="n">json</span><span class="o">=</span><span class="n">schema</span><span class="p">)))</span>
<span class="linenos">41</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Generated text (guided): </span><span class="si">{</span><span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="linenos">42</span>
<span class="linenos">43</span> <span class="c1"># Got output like</span>
<span class="linenos">44</span> <span class="c1"># Prompt: &quot;&lt;|system|&gt;\nYou are a helpful assistant that answers in JSON. Here&#39;s the json schema you must adhere to:\n&lt;schema&gt;\n{&#39;title&#39;: &#39;WirelessAccessPoint&#39;, &#39;type&#39;: &#39;object&#39;, &#39;properties&#39;: {&#39;ssid&#39;: {&#39;title&#39;: &#39;SSID&#39;, &#39;type&#39;: &#39;string&#39;}, &#39;securityProtocol&#39;: {&#39;title&#39;: &#39;SecurityProtocol&#39;, &#39;type&#39;: &#39;string&#39;}, &#39;bandwidth&#39;: {&#39;title&#39;: &#39;Bandwidth&#39;, &#39;type&#39;: &#39;string&#39;}}, &#39;required&#39;: [&#39;ssid&#39;, &#39;securityProtocol&#39;, &#39;bandwidth&#39;]}\n&lt;/schema&gt;\n&lt;/s&gt;\n&lt;|user|&gt;\nI&#39;m currently configuring a wireless access point for our office network and I need to generate a JSON object that accurately represents its settings. The access point&#39;s SSID should be &#39;OfficeNetSecure&#39;, it uses WPA2-Enterprise as its security protocol, and it&#39;s capable of a bandwidth of up to 1300 Mbps on the 5 GHz band. This JSON object will be used to document our network configurations and to automate the setup process for additional access points in the future. Please provide a JSON object that includes these details.&lt;/s&gt;\n&quot;</span>
<span class="linenos">45</span> <span class="c1"># Generated text (unguided): &#39;&lt;|assistant|&gt;\nHere\&#39;s a JSON object that accurately represents the settings of a wireless access point for our office network:\n\n```json\n{\n &quot;title&quot;: &quot;WirelessAccessPoint&quot;,\n &quot;&#39;</span>
<span class="linenos">46</span> <span class="c1"># Generated text (guided): &#39;{&quot;ssid&quot;: &quot;OfficeNetSecure&quot;, &quot;securityProtocol&quot;: &quot;WPA2-Enterprise&quot;, &quot;bandwidth&quot;: &quot;1300 Mbps&quot;}&#39;</span>
<span class="linenos">47</span>
<span class="linenos">48</span>
<span class="linenos">49</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">50</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="llm_inference_async_streaming.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Generate Text in Streaming</p>
</div>
</a>
<a class="right-next"
href="llm_inference.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Generate text</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2024, NVidia.
<br/>
</p>
</div>
</div>
</div>
</footer>
</body>
</html>