TensorRT-LLMs/cpp/tensorrt_llm/kernels/mlaKernels.cu
Kaiyu Xie 2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00

475 lines
21 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaBf16Wrapper.h"
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/mathUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttentionUtils.h"
#include "tensorrt_llm/kernels/gptKernels.h"
#include "tensorrt_llm/kernels/mlaKernels.h"
#include <cstdint>
#include <cub/cub.cuh>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
using namespace tensorrt_llm::common;
namespace tensorrt_llm
{
namespace kernels
{
// A stateful callback functor that maintains the running sum between consecutive scans.
struct BlockPrefixCallbackOp
{
// Running prefix
int mRunningTotal;
// Constructor
__device__ BlockPrefixCallbackOp(int runningTotal)
: mRunningTotal(runningTotal)
{
}
// Thread-0 is responsible for returning a value for seeding the block-wide scan.
__device__ int operator()(int blockAggregate)
{
int oldPrefix = mRunningTotal;
mRunningTotal += blockAggregate;
return oldPrefix;
}
};
template <typename T>
struct VecType
{
using Type = T;
};
template <>
struct VecType<float>
{
using Type = float4;
};
template <>
struct VecType<half>
{
using Type = uint4;
};
template <>
struct VecType<__nv_bfloat16>
{
using Type = mmha::bf16_8_t;
};
namespace mla
{
template <typename T>
inline __device__ void apply_rotary_embedding_mla(
T& q, T q_pair_left, T q_pair_right, T& k, T k_pair_left, T k_pair_right, float2 const& coef)
{
T cos = cuda_cast<T>(coef.x);
T sin = cuda_cast<T>(coef.y);
q = cuda_cast<T>(cuda_cast<float>(cos * q_pair_left)) + cuda_cast<T>(cuda_cast<float>(sin * q_pair_right));
k = cuda_cast<T>(cuda_cast<float>(cos * k_pair_left)) + cuda_cast<T>(cuda_cast<float>(sin * k_pair_right));
}
template <typename T>
inline __device__ void apply_rotary_embedding_mla(T& q, T q_left, T q_right, float2 const& coef)
{
T cos = cuda_cast<T>(coef.x);
T sin = cuda_cast<T>(coef.y);
q = cuda_cast<T>(cuda_cast<float>(cos * q_left)) + cuda_cast<T>(cuda_cast<float>(sin * q_right));
}
} // namespace mla
template <typename T, int BLOCK_SIZE, int K_DIM, int ROPE_DIM, typename KVCacheBuffer>
__global__ void applyMLARopeAndAssignQKVKernelOptContext(T* qkv_output, T const* fuse_buf, KVCacheBuffer kv_cache,
float2 const* cos_sin_cache, size_t head_num, int head_size, int c_q, int c_k, int* cu_q_seqlens,
int32_t const* kv_cache_lengths, uint32_t max_input_seq_len)
{
// Constants.
using VecT = typename VecType<T>::Type;
constexpr auto HEAD_SIZE = ROPE_DIM;
constexpr auto K_HEAD_SIZE = K_DIM;
constexpr auto HALF_ROTATARY_DIM = ROPE_DIM / 2;
constexpr auto BYTES_PER_ELT = sizeof(T);
constexpr auto BYTES_PER_LOAD = 16;
constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT;
static_assert((HEAD_SIZE * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "Head size needs to be multiple of 16 bytes.");
constexpr auto VECS_PER_HEAD = HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD;
constexpr auto K_VECS_PER_HEAD = K_HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD;
static_assert(BLOCK_SIZE % VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads.");
constexpr auto TOKENS_PER_BLOCK = BLOCK_SIZE / VECS_PER_HEAD;
constexpr auto K_TOKENS_PER_BLOCK = BLOCK_SIZE / K_VECS_PER_HEAD;
constexpr auto TOTAL_VECS_PER_HEAD = VECS_PER_HEAD + K_VECS_PER_HEAD;
// Block/Head idx.
size_t const batch_idx = blockIdx.y;
size_t const head_idx = blockIdx.z;
if (head_idx < head_num)
{
size_t const head_dim_vec_idx = (threadIdx.x % VECS_PER_HEAD);
size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC;
bool const first_half = head_dim_idx < HALF_ROTATARY_DIM;
size_t const seq_len_loop_end
= size_t((max_input_seq_len + TOKENS_PER_BLOCK - 1) / TOKENS_PER_BLOCK) * TOKENS_PER_BLOCK;
// Mainloop.
for (int local_token_idx = (threadIdx.x / VECS_PER_HEAD) + blockIdx.x * TOKENS_PER_BLOCK;
local_token_idx < seq_len_loop_end; local_token_idx += TOKENS_PER_BLOCK * gridDim.x)
{
int const global_token_offset = cu_q_seqlens[batch_idx];
int const cache_seq_len = kv_cache_lengths[batch_idx];
int token_idx_in_kv_cache = local_token_idx;
bool const valid_token = token_idx_in_kv_cache < cache_seq_len;
// Limit the token_idx to cache seq length (we need all threads in this block to be involved).
token_idx_in_kv_cache = std::min(token_idx_in_kv_cache, cache_seq_len - 1);
local_token_idx = std::min(local_token_idx, cache_seq_len - 1);
int const global_token_idx = local_token_idx + global_token_offset;
auto const position_id = local_token_idx;
auto const src_bias = first_half ? head_dim_idx * 2 : (head_dim_idx - HALF_ROTATARY_DIM) * 2;
float2 const* rotary_coef_cache_buffer
= cos_sin_cache + static_cast<size_t>(ROPE_DIM) * position_id + (head_dim_idx);
VecT q, k;
VecT q_ref[2], k_ref[2];
auto const src_k_global_offset = static_cast<size_t>(global_token_idx) * (c_q + c_k + ROPE_DIM) + c_q + c_k;
auto const src_q_global_offset
= static_cast<size_t>(global_token_idx) * head_num * ((head_size + ROPE_DIM) * 2 + head_size)
+ (head_size + ROPE_DIM) * head_idx + head_size;
for (int i = 0; i < 2; ++i)
{
q_ref[i]
= *reinterpret_cast<VecT const*>(&qkv_output[src_q_global_offset + src_bias + i * ELTS_PER_VEC]);
k_ref[i] = *reinterpret_cast<VecT const*>(&fuse_buf[src_k_global_offset + src_bias + i * ELTS_PER_VEC]);
}
for (int elt_id = 0; elt_id < ELTS_PER_VEC; elt_id++)
{
float2 rotary_coef_cache = rotary_coef_cache_buffer[elt_id];
rotary_coef_cache.y = first_half ? -rotary_coef_cache.y : rotary_coef_cache.y;
auto& q_ = reinterpret_cast<T*>(&q)[elt_id];
auto& k_ = reinterpret_cast<T*>(&k)[elt_id];
auto q_left = first_half ? reinterpret_cast<T*>(&q_ref)[elt_id * 2]
: reinterpret_cast<T*>(&q_ref)[elt_id * 2 + 1];
auto q_right = first_half ? reinterpret_cast<T*>(&q_ref)[elt_id * 2 + 1]
: reinterpret_cast<T*>(&q_ref)[elt_id * 2];
auto k_left = first_half ? reinterpret_cast<T*>(&k_ref)[elt_id * 2]
: reinterpret_cast<T*>(&k_ref)[elt_id * 2 + 1];
auto k_right = first_half ? reinterpret_cast<T*>(&k_ref)[elt_id * 2 + 1]
: reinterpret_cast<T*>(&k_ref)[elt_id * 2];
// float2 rotary_coef_cache;
// T q_left, q_right, k_left, k_right;
mla::apply_rotary_embedding_mla(q_, q_left, q_right, k_, k_left, k_right, rotary_coef_cache);
}
// do sync
__syncwarp();
if (valid_token)
{
if (head_idx == 0)
{
auto kDst = reinterpret_cast<T*>(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache));
auto inBlockIdx = kv_cache.getKVLocalIdx(
token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, K_VECS_PER_HEAD + head_dim_vec_idx);
reinterpret_cast<VecT*>(kDst)[inBlockIdx] = k;
}
auto const dst_q_idx
= static_cast<size_t>(global_token_idx) * head_num * ((head_size + ROPE_DIM) * 2 + head_size)
+ head_idx * (head_size + ROPE_DIM) + head_size + head_dim_idx;
auto const dst_k_idx
= static_cast<size_t>(global_token_idx) * head_num * ((head_size + ROPE_DIM) * 2 + head_size)
+ head_num * (head_size + ROPE_DIM) + head_idx * (head_size + ROPE_DIM) + head_size + head_dim_idx;
reinterpret_cast<VecT*>(qkv_output)[dst_q_idx / ELTS_PER_VEC] = q;
reinterpret_cast<VecT*>(qkv_output)[dst_k_idx / ELTS_PER_VEC] = k;
}
}
}
else
{
int block_dim = gridDim.z - head_num;
int block_id = head_idx - head_num;
size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD);
size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC;
size_t const seq_len_loop_end
= size_t((max_input_seq_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK;
// Mainloop.
for (int local_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + gridDim.x * K_TOKENS_PER_BLOCK * block_id
+ blockIdx.x * K_TOKENS_PER_BLOCK;
local_token_idx < seq_len_loop_end; local_token_idx += block_dim * K_TOKENS_PER_BLOCK * gridDim.x)
{
int const global_token_offset = cu_q_seqlens[batch_idx];
int const cache_seq_len = kv_cache_lengths[batch_idx];
int token_idx_in_kv_cache = local_token_idx;
bool const valid_token = token_idx_in_kv_cache < cache_seq_len;
// Limit the token_idx to cache seq length (we need all threads in this block to be involved).
token_idx_in_kv_cache = std::min(token_idx_in_kv_cache, cache_seq_len - 1);
local_token_idx = std::min(local_token_idx, cache_seq_len - 1);
int const global_token_idx = local_token_idx + global_token_offset;
if (valid_token)
{
auto const src_k_global_offset = static_cast<size_t>(global_token_idx) * (c_q + c_k + ROPE_DIM) + c_q;
auto kDst = reinterpret_cast<T*>(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache));
auto inBlockIdx
= kv_cache.getKVLocalIdx(token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, head_dim_vec_idx);
reinterpret_cast<VecT*>(kDst)[inBlockIdx]
= *reinterpret_cast<VecT const*>(&fuse_buf[src_k_global_offset + head_dim_idx]);
}
}
}
}
template <typename T, int BLOCK_SIZE, int K_DIM, int ROPE_DIM, typename KVCacheBuffer>
__global__ void applyMLARopeAndAssignQKVKernelGeneration(T* qkv_output, T* q_buf, T const* fuse_buf,
KVCacheBuffer kv_cache, float2 const* cos_sin_cache, size_t head_num, int head_size, int c_q, int c_k,
int total_s_len, int* seqQOffset, uint32_t* fmha_tile_counter, int32_t const* kv_cache_lengths, int* seqKVOffsets)
{
// Constants.
using VecT = typename VecType<T>::Type;
constexpr auto HEAD_SIZE = ROPE_DIM;
constexpr auto K_HEAD_SIZE = K_DIM;
constexpr auto HALF_ROTATARY_DIM = ROPE_DIM / 2;
constexpr auto BYTES_PER_ELT = sizeof(T);
constexpr auto BYTES_PER_LOAD = 16;
constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT;
static_assert((HEAD_SIZE * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "Head size needs to be multiple of 16 bytes.");
constexpr auto VECS_PER_HEAD = HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD;
constexpr auto K_VECS_PER_HEAD = K_HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD;
static_assert(BLOCK_SIZE % VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads.");
constexpr auto TOKENS_PER_BLOCK = BLOCK_SIZE / VECS_PER_HEAD;
constexpr auto K_TOKENS_PER_BLOCK = BLOCK_SIZE / K_VECS_PER_HEAD;
constexpr auto TOTAL_VEC_PER_HEAD = VECS_PER_HEAD + K_VECS_PER_HEAD;
// Block/Head idx.
size_t const head_idx = blockIdx.y;
if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0)
{
fmha_tile_counter[0] = 0;
seqQOffset[0] = 0;
}
if (head_idx <= head_num)
{
size_t const head_dim_vec_idx = (threadIdx.x % VECS_PER_HEAD);
size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC;
bool const first_half = head_dim_idx < HALF_ROTATARY_DIM;
int const seq_len_loop_end = size_t((total_s_len + TOKENS_PER_BLOCK - 1) / TOKENS_PER_BLOCK) * TOKENS_PER_BLOCK;
// Mainloop.
for (int global_token_idx = (threadIdx.x / VECS_PER_HEAD) + blockIdx.x * TOKENS_PER_BLOCK;
global_token_idx < seq_len_loop_end; global_token_idx += TOKENS_PER_BLOCK * gridDim.x)
{
auto batch_idx = global_token_idx;
bool const valid_token = batch_idx < total_s_len;
VecT data;
if (valid_token)
{
VecT ref[2];
auto const position_id = kv_cache_lengths[batch_idx] - 1;
auto const src_bias = first_half ? head_dim_idx * 2 : (head_dim_idx - HALF_ROTATARY_DIM) * 2;
float2 const* rotary_coef_cache_buffer
= cos_sin_cache + static_cast<size_t>(ROPE_DIM) * position_id + (head_dim_idx);
if (head_idx == head_num)
{
auto const src_k_global_offset
= static_cast<size_t>(global_token_idx) * (c_q + c_k + ROPE_DIM) + c_q + c_k;
for (int i = 0; i < 2; ++i)
{
ref[i] = *reinterpret_cast<VecT const*>(
&fuse_buf[src_k_global_offset + src_bias + i * ELTS_PER_VEC]);
}
}
else
{
auto const src_q_global_offset
= static_cast<size_t>(global_token_idx) * head_num * (head_size + ROPE_DIM)
+ (head_size + ROPE_DIM) * head_idx + head_size;
for (int i = 0; i < 2; ++i)
{
ref[i]
= *reinterpret_cast<VecT const*>(&q_buf[src_q_global_offset + src_bias + i * ELTS_PER_VEC]);
}
}
for (int elt_id = 0; elt_id < ELTS_PER_VEC; elt_id++)
{
float2 rotary_coef_cache = rotary_coef_cache_buffer[elt_id];
rotary_coef_cache.y = first_half ? -rotary_coef_cache.y : rotary_coef_cache.y;
auto& data_ = reinterpret_cast<T*>(&data)[elt_id];
auto data_left = first_half ? reinterpret_cast<T*>(&ref)[elt_id * 2]
: reinterpret_cast<T*>(&ref)[elt_id * 2 + 1];
auto data_right = first_half ? reinterpret_cast<T*>(&ref)[elt_id * 2 + 1]
: reinterpret_cast<T*>(&ref)[elt_id * 2];
mla::apply_rotary_embedding_mla(data_, data_left, data_right, rotary_coef_cache);
}
}
__syncwarp();
if (valid_token)
{
if (head_idx == head_num)
{
auto const batch_idx = global_token_idx;
auto const token_kv_idx = kv_cache_lengths[batch_idx] - 1;
auto kDst = reinterpret_cast<T*>(kv_cache.getKBlockPtr(batch_idx, token_kv_idx));
auto inBlockIdx = kv_cache.getKVLocalIdx(
token_kv_idx, 0, TOTAL_VEC_PER_HEAD, K_VECS_PER_HEAD + head_dim_vec_idx);
reinterpret_cast<VecT*>(kDst)[inBlockIdx] = data;
}
else
{
auto const dst_q_idx = static_cast<size_t>(global_token_idx) * head_num * (c_k + ROPE_DIM)
+ head_idx * (c_k + ROPE_DIM) + c_k + head_dim_idx;
reinterpret_cast<VecT*>(qkv_output)[dst_q_idx / ELTS_PER_VEC] = data;
}
}
}
}
else
{
int block_dim = gridDim.y - head_num - 1;
int block_id = head_idx - head_num - 1;
size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD);
size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC;
size_t const seq_len_loop_end
= size_t((total_s_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK;
// Mainloop.
for (int global_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + gridDim.x * K_TOKENS_PER_BLOCK * block_id
+ blockIdx.x * K_TOKENS_PER_BLOCK;
global_token_idx < seq_len_loop_end; global_token_idx += block_dim * K_TOKENS_PER_BLOCK * gridDim.x)
{
bool valid_token = global_token_idx < total_s_len;
auto const batch_idx = std::min(global_token_idx, total_s_len - 1);
if (valid_token)
{
if (head_dim_vec_idx == 0)
{
seqQOffset[batch_idx + 1] = head_num * (batch_idx + 1);
}
auto const token_kv_idx = kv_cache_lengths[batch_idx] - 1;
auto const src_kv_global_offset = static_cast<size_t>(global_token_idx) * (c_q + c_k + ROPE_DIM) + c_q;
auto kDst = reinterpret_cast<T*>(kv_cache.getKBlockPtr(batch_idx, token_kv_idx));
auto inBlockIdx = kv_cache.getKVLocalIdx(token_kv_idx, 0, TOTAL_VEC_PER_HEAD, head_dim_vec_idx);
reinterpret_cast<VecT*>(kDst)[inBlockIdx]
= *reinterpret_cast<VecT const*>(&fuse_buf[src_kv_global_offset + head_dim_idx]);
}
}
}
// The implementation of the parallel scan in the thread block (see CUB for details).
using BlockScan = cub::BlockScan<int, BLOCK_SIZE>;
// Allocate storage in shared memory to do the scan.
__shared__ typename BlockScan::TempStorage tempKVStorage;
BlockPrefixCallbackOp prefixKVOp(0);
if (blockIdx.x == 0 && blockIdx.y == 0)
{
int const batchSizeBound = total_s_len;
for (int batchOffset = 0; batchOffset <= batchSizeBound; batchOffset += BLOCK_SIZE)
{
// The index of the batch.
int batchIdx = batchOffset + threadIdx.x;
int seqKVLength = 0;
if (batchIdx < batchSizeBound)
{
seqKVLength = kv_cache_lengths[batchIdx];
}
int seqKVOffset;
BlockScan(tempKVStorage).ExclusiveSum(seqKVLength, seqKVOffset, prefixKVOp);
if (batchIdx <= batchSizeBound)
{
seqKVOffsets[batchIdx] = seqKVOffset;
}
}
}
}
template <typename T, typename KVCacheBuffer>
void invokeMLARopeContext(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream)
{
dim3 grid(int(tensorrt_llm::common::divUp(params.max_input_seq_len, 32)), params.batch_size, params.head_num + 8);
auto head_size = params.meta.qk_nope_head_dim;
applyMLARopeAndAssignQKVKernelOptContext<T, 256, 512, 64, KVCacheBuffer>
<<<grid, 256, 0, stream>>>(params.attention_input_buf, params.fused_a_input, kv_cache_buffer,
params.cos_sin_cache, params.head_num, head_size, params.meta.q_lora_rank, params.meta.kv_lora_rank,
params.cu_q_seqlens, params.cache_seq_lens, params.max_input_seq_len);
}
template <typename T, typename KVCacheBuffer>
void invokeMLARopeGeneration(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream)
{
dim3 grid(int(tensorrt_llm::common::divUp(params.acc_q_len, 32)), params.head_num + 1 + 8);
auto head_size = params.meta.qk_nope_head_dim;
applyMLARopeAndAssignQKVKernelGeneration<T, 256, 512, 64, KVCacheBuffer>
<<<grid, 256, 0, stream>>>(params.attention_input_buf, params.q_buf, params.fused_a_input, kv_cache_buffer,
params.cos_sin_cache, params.head_num, head_size, params.meta.q_lora_rank, params.meta.kv_lora_rank,
params.acc_q_len, params.seqQOffset, params.fmha_tile_counter, params.cache_seq_lens, params.cu_kv_seqlens);
}
#define INSTANTIATE_MLA_ROPE(T, KVCacheBuffer) \
template void invokeMLARopeContext(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream); \
template void invokeMLARopeGeneration(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream);
INSTANTIATE_MLA_ROPE(float, KVBlockArray);
INSTANTIATE_MLA_ROPE(half, KVBlockArray);
INSTANTIATE_MLA_ROPE(float, KVLinearBuffer);
INSTANTIATE_MLA_ROPE(half, KVLinearBuffer);
#ifdef ENABLE_BF16
INSTANTIATE_MLA_ROPE(__nv_bfloat16, KVBlockArray);
INSTANTIATE_MLA_ROPE(__nv_bfloat16, KVLinearBuffer);
#endif
} // namespace kernels
} // namespace tensorrt_llm