TensorRT-LLMs/benchmarks/python/gpt_benchmark.py
石晓伟 59f41c067d
Update TensorRT-LLM (#708)
* Update TensorRT-LLM

* update

* Bump version to 0.7.0
2023-12-20 16:38:28 +08:00

222 lines
9.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from math import ceil
import torch
import tensorrt_llm
from allowed_configs import get_build_config # isort:skip
from base_benchmark import BaseBenchmark # isort:skip
from build import build_gpt, get_quant_mode # isort:skip
class GPTBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_out_lens, rank, world_size):
super().__init__(args.engine_dir, args.model, args.dtype, rank,
world_size, args.serial_build)
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.num_beams = args.num_beams
self.mode = args.mode
self.build_time = 0
self.cuda_graph_mode = args.enable_cuda_graph
if args.engine_dir is not None:
# Get build configs from engine directory is done in base class
# Deserialize engine from engine directory
self.serialize_path = os.path.join(args.engine_dir,
self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
else:
for key, value in get_build_config(args.model).items():
setattr(self, key, value)
if args.force_num_layer_1:
self.num_layers = 1
if args.max_batch_size is not None:
self.max_batch_size = args.max_batch_size
if args.max_input_len is not None:
self.max_input_len = args.max_input_len
if args.max_output_len is not None:
self.max_output_len = args.max_output_len
self.quant_mode, _, _, _ = get_quant_mode(args.quantization)
self.enable_fp8 = self.quant_mode.has_fp8_qdq()
self.fp8_kv_cache = self.quant_mode.has_fp8_kv_cache()
# Plugins
self.use_gpt_attention_plugin = False
self.remove_input_padding = False
if args.mode == 'plugin':
self.use_gpt_attention_plugin = True
self.remove_input_padding = True
elif args.mode == 'ootb-except-mha':
self.use_gpt_attention_plugin = True
engine_buffer, build_time = build_gpt(args)
self.build_time = build_time
assert engine_buffer is not None
if args.build_only:
return
if not hasattr(self, 'num_kv_heads') or self.num_kv_heads is None:
self.num_kv_heads = self.num_heads
model_config = tensorrt_llm.runtime.ModelConfig(
vocab_size=self.vocab_size,
num_layers=self.num_layers,
num_heads=self.num_heads // self.world_size,
num_kv_heads=ceil(self.num_kv_heads / self.world_size),
hidden_size=self.hidden_size // self.world_size,
gpt_attention_plugin=self.use_gpt_attention_plugin,
remove_input_padding=self.remove_input_padding,
quant_mode=self.quant_mode,
use_custom_all_reduce=self.use_custom_all_reduce,
)
if args.model == 'chatglm_6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=130005,
pad_id=3,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.ChatGLMGenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif args.model in ['chatglm2_6b', 'chatglm3_6b']:
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=2,
pad_id=0,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, self.runtime_mapping)
else:
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=50256,
pad_id=50256,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
def get_config(self):
for inlen, outlen in self.in_out_lens:
if inlen > self.max_input_len or outlen > self.max_output_len:
print(
f'[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) and '
f'outlen({outlen}) <= max_outlen({self.max_output_len}) failed, skipping.'
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f'[WARNING] check batch_size({batch_size}) '
f'<= max_batch_size({self.max_batch_size}) failed, skipping.'
)
continue
yield (batch_size, inlen, outlen)
def prepare_inputs(self, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = torch.tensor([inlen
for _ in range(batch_size)]).int().cuda()
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
return (input_ids, input_lengths)
def get_report_dict(self, benchmark_profiler=None):
report_dict = super().get_report_dict(
benchmark_profiler=benchmark_profiler)
if benchmark_profiler is not None:
report_dict["generation_time(ms)"] = None
report_dict["total_generated_tokens"] = None
report_dict["generation_tokens_per_second"] = None
return report_dict
def run(self, inputs, config, benchmark_profiler=None):
batch_size, inlen, outlen = config[0], config[1], config[2]
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
if self.remove_input_padding:
self.decoder.decode_batch(inputs[0],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
else:
self.decoder.decode(inputs[0],
inputs[1],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
torch.cuda.synchronize()
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
report_dict = super().get_report_dict()
batch_size, inlen, outlen = config[0], config[1], config[2]
tokens_per_sec = round(batch_size * outlen / (latency / 1000), 2)
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_kv_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = outlen
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if benchmark_profiler is not None:
iter_count = benchmark_profiler.get_aux_info('iter_count')
generation_time_ms = benchmark_profiler.get_timer_value(
'generation_time')
generation_step_count = benchmark_profiler.get_aux_info(
'generation_step_count')
token_per_step = batch_size * self.num_beams
total_tokens = generation_step_count * token_per_step
report_dict["generation_time(ms)"] = round(
generation_time_ms / iter_count, 3)
report_dict["total_generated_tokens"] = total_tokens / iter_count
tokens_per_second = round(
total_tokens * 1000.0 / generation_time_ms, 3)
report_dict["generation_tokens_per_second"] = tokens_per_second
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)