TensorRT-LLMs/examples/serve/openai_chat_client_for_multimodal.py
Yechan Kim c6e2111f4e
feat: enhance trtllm serve multimodal (#3757)
* feat: enhance trtllm serve multimodal

1. made the load_image and load_video asynchronous
2. add image_encoded input support to be compatible with genai-perf
3. support text-only on multimodal mdoels(currently, Qwen2-VL & Qwen2.5-VL)

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* add test

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* fix bandit

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* trimming uils

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* trimming for test

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* genai perf command fix

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* command fix

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* refactor chat_utils

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

* stress test genai-perf command

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>

---------

Signed-off-by: yechank <161688079+yechank-nvidia@users.noreply.github.com>
2025-05-15 16:16:31 -07:00

115 lines
2.9 KiB
Python

### OpenAI Chat Client
from openai import OpenAI
from tensorrt_llm.inputs import encode_base64_content_from_url
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="tensorrt_llm",
)
# SINGLE IMAGE INFERENCE
response = client.chat.completions.create(
model="Qwen2.5-VL-3B-Instruct",
messages=[{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Describe the natural environment in the image."
}, {
"type": "image_url",
"image_url": {
"url":
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png"
}
}]
}],
max_tokens=64,
)
print(response)
# MULTI IMAGE INFERENCE
response = client.chat.completions.create(
model="Qwen2.5-VL-3B-Instruct",
messages=[{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Tell me the difference between two images"
}, {
"type": "image_url",
"image_url": {
"url":
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"
}
}, {
"type": "image_url",
"image_url": {
"url":
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png"
}
}]
}],
max_tokens=64,
)
print(response)
# SINGLE VIDEO INFERENCE
response = client.chat.completions.create(
model="Qwen2.5-VL-3B-Instruct",
messages=[{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Tell me what you see in the video briefly."
}, {
"type": "video_url",
"video_url": {
"url":
"https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/OAI-sora-tokyo-walk.mp4"
}
}]
}],
max_tokens=64,
)
print(response)
# IMAGE EMBED INFERENCE
image64 = encode_base64_content_from_url(
"https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png"
)
response = client.chat.completions.create(
model="Qwen2.5-VL-3B-Instruct",
messages=[{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Describe the natural environment in the image."
}, {
"type": "image_url",
"image_url": {
"url": "data:image/png;base64," + image64
}
}]
}],
max_tokens=64,
)
print(response)