TensorRT-LLMs/tests/unittest/_torch/speculative/test_eagle3.py
Mike Iovine 5416966ddb
Add initial EAGLE-3 implementation (#3035)
Signed-off-by: Mike Iovine <miovine@nvidia.com>
2025-03-29 22:31:24 +08:00

85 lines
2.6 KiB
Python

import os
import sys
import unittest
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.bindings.executor import KvCacheConfig
from tensorrt_llm.llmapi import EagleDecodingConfig
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.llm_data import llm_models_root
def test_llama_eagle3():
models_path = llm_models_root()
pytorch_config = PyTorchConfig(
enable_overlap_scheduler=False,
use_cuda_graph=False,
)
kv_cache_config = KvCacheConfig(enable_block_reuse=False, )
eagle_model_dir = f"{models_path}/EAGLE3-LLaMA3.1-Instruct-8B"
target_model_dir = f"{models_path}/llama-3.1-model/Llama-3.1-8B-Instruct"
draft_len = 4
spec_config = EagleDecodingConfig(
max_draft_len=draft_len, pytorch_eagle_weights_path=eagle_model_dir)
llm_spec = LLM(model=target_model_dir,
pytorch_backend_config=pytorch_config,
kv_cache_config=kv_cache_config,
speculative_config=spec_config)
sampling_params = SamplingParams(
max_tokens=32,
temperature=0,
)
# First make sure the acceptance rate is reasonable.
tok_ids = llm_spec.tokenizer.encode("The future of AI is")
num_tokens = 0
num_drafted = 0
num_accepted = 0
for output in llm_spec.generate_async(tok_ids,
SamplingParams(max_tokens=128,
temperature=0),
streaming=True):
beam = output.outputs[0]
new_tokens = beam.token_ids
num_drafted += draft_len
num_accepted += len(new_tokens) - num_tokens - 1
num_tokens = len(new_tokens)
accept_rate = num_accepted / num_drafted
assert accept_rate > 0.25
prompts = [
"The capital of France is", "The president of the United States is"
]
results_spec = llm_spec.generate(prompts, sampling_params)
generated_text_spec = [result.outputs[0].text for result in results_spec]
del llm_spec
llm_ref = LLM(model=target_model_dir,
pytorch_backend_config=pytorch_config,
kv_cache_config=kv_cache_config)
results_ref = llm_ref.generate(prompts, sampling_params)
generated_text_ref = [result.outputs[0].text for result in results_ref]
for text_spec, text_ref in zip(generated_text_spec, generated_text_ref):
# The spec decode algorithm currently guarantees identical results
assert text_spec == text_ref
if __name__ == "__main__":
unittest.main()