TensorRT-LLMs/tests/unittest/scaffolding/test_worker.py
WeiHaocheng ff35af77ea
feat: refactor scaffolding worker and support openai api worker (#3166)
Signed-off-by: Fred Wei <20514172+WeiHaocheng@users.noreply.github.com>
Signed-off-by: fredw <20514172+WeiHaocheng@users.noreply.github.com>
2025-04-01 18:31:52 +08:00

124 lines
3.9 KiB
Python

from pathlib import Path
# isort: off
from utils.llm_data import llm_models_root
# isort: on
import asyncio
import os
import sys
import openai
import pytest
from llmapi.apps.openai_server import RemoteOpenAIServer
from tensorrt_llm.scaffolding.task import GenerationTask, TaskStatus
from tensorrt_llm.scaffolding.worker import TRTLLMWorker, TRTOpenaiWorker
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from llmapi.test_llm import get_model_path
@pytest.fixture(scope="module")
def deepseek_distill_7b_path() -> Path:
model_dir = llm_models_root() / "DeepSeek-R1/DeepSeek-R1-Distill-Qwen-7B"
return model_dir
@pytest.fixture(scope="module")
def default_prompt():
prompt = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?\r\n\r\n"
return prompt
@pytest.fixture(scope="module")
def model_name():
return "DeepSeek-R1/DeepSeek-R1-Distill-Qwen-7B"
@pytest.fixture(scope="module", params=['pytorch'])
def backend(request):
return request.param
@pytest.fixture(scope="module", params=[2], ids=["enable_processpool"])
def num_postprocess_workers(request):
return request.param
@pytest.fixture(scope="module")
def server(model_name: str, backend: str, num_postprocess_workers: int):
model_path = get_model_path(model_name)
args = ["--backend", f"{backend}"]
args.extend(["--num_postprocess_workers", f"{num_postprocess_workers}"])
with RemoteOpenAIServer(model_path, args) as remote_server:
yield remote_server
@pytest.fixture(scope="module")
def async_client(server: RemoteOpenAIServer):
return server.get_async_client()
@pytest.mark.asyncio(loop_scope="module")
async def test_single_completion(async_client: openai.OpenAI, model_name):
completion = await async_client.completions.create(
model=model_name,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0,
)
choice = completion.choices[0]
assert len(choice.text) >= 5
assert choice.finish_reason == "length"
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
completion_tokens = 5
prompt_tokens = 6
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=completion_tokens,
prompt_tokens=prompt_tokens,
total_tokens=prompt_tokens + completion_tokens)
# test using token IDs
completion = await async_client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
assert len(completion.choices[0].text) >= 1
def create_trtoai_worker(model_name, async_client):
return TRTOpenaiWorker(
async_client=async_client,
model=model_name,
)
@pytest.mark.asyncio(loop_scope="module")
async def test_trtoai_worker_generation(default_prompt, model_name,
async_client):
worker = create_trtoai_worker(model_name, async_client)
task = GenerationTask.create_from_prompt(default_prompt)
status = await worker.run_task(task)
assert status == TaskStatus.SUCCESS, "Generation Task is not successful with TRTOpenaiWorker"
def create_trtllm_worker(model_path):
return TRTLLMWorker.init_with_new_llm(str(model_path),
backend="pytorch",
max_batch_size=32,
max_num_tokens=4096,
temperature=0.9)
def test_trtllm_worker_generation(default_prompt, deepseek_distill_7b_path):
worker = create_trtllm_worker(deepseek_distill_7b_path)
task = GenerationTask.create_from_prompt(default_prompt)
status = asyncio.run(worker.run_task(task))
assert status == TaskStatus.SUCCESS, "Generation Task is not successful with TRTLLMWorker"