TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptSession.h
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

386 lines
14 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*****************************************************************************
*
* GptSession is going to be deprecated soon.
* Please do not add new functionality in this file!
*
*****************************************************************************/
#pragma once
#include "tensorrt_llm/batch_manager/kvCacheConfig.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/decodingMode.h"
#include "tensorrt_llm/runtime/generationInput.h"
#include "tensorrt_llm/runtime/generationOutput.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <NvInferRuntime.h>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <vector>
namespace tensorrt_llm::batch_manager
{
class TrtGptModelV1;
}
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
class KVCacheManager;
}
namespace tensorrt_llm::runtime
{
namespace utils
{
std::vector<uint8_t> loadEngine(std::string const& enginePath);
}
class AllReduceBuffers;
class IStatefulGptDecoder;
class NcclCommunicator;
class RuntimeBuffers;
class TllmRuntime;
class [[deprecated("Use the executor API instead.")]] GptSession
{
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
using KvCacheConfig = batch_manager::kv_cache_manager::KvCacheConfig;
using TensorPtr = runtime::ITensor::SharedPtr;
using TokenGeneratedCallback = std::function<void(SizeType32 step, bool finished)>;
public:
using LoggerPtr = std::shared_ptr<nvinfer1::ILogger>;
//! @brief Configuration for session execution and buffer sizes.
//! `generate` may be called with batch size and beam width smaller than the configured parameters.
//! @details `maxBatchSize` will be divided by the number of micro batches to initialize each batch buffer.
class Config
{
public:
Config(SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxSequenceLength,
float gpuWeightsPercent = 1.0)
: maxBatchSize{maxBatchSize}
, maxBeamWidth{maxBeamWidth}
, maxSequenceLength{maxSequenceLength}
, gpuWeightsPercent{gpuWeightsPercent}
{
}
// The maximum number of sequences in a batch
SizeType32 maxBatchSize;
// The maximum width of the beams in beam-search
SizeType32 maxBeamWidth;
// The length of the longest input sequence
SizeType32 maxSequenceLength;
// Percentage of weights on the gpu at runtime
float gpuWeightsPercent;
// Whether the session will use a different decoder per request.
// It must be set to `true` when running in-flight batching
bool decoderPerRequest{false};
// Whether the session will use CUDA graphs for the engine execution in generation phase
bool cudaGraphMode{false};
KvCacheConfig kvCacheConfig{};
// The micro batch size to be used in context phase.
// Batches entered in `GptSession::generation` will be split into smaller micro batches of this size
std::optional<SizeType32> ctxMicroBatchSize = std::nullopt;
// The micro batch size to be used in generation phase.
// Batches entered in `GptSession::generation` will be split into smaller micro batches of this size.
std::optional<SizeType32> genMicroBatchSize = std::nullopt;
std::optional<DecodingMode> decodingMode = std::nullopt;
bool normalizeLogProbs = true;
};
//! @brief Optional profiler class to profile the generation phase of an inference request
class GenerationProfiler
{
public:
// Use a constexpr variable to resolve the ambiguous match for overloaded CudaEvent constructor
static constexpr unsigned int flags{cudaEventDefault};
GenerationProfiler()
: start(flags)
, end(flags)
{
}
CudaEvent const& getStart() const
{
return start;
}
CudaEvent const& getEnd() const
{
return end;
}
float getElapsedTimeMs()
{
start.synchronize();
end.synchronize();
float result;
TLLM_CUDA_CHECK(::cudaEventElapsedTime(&result, start.get(), end.get()));
return result;
}
private:
CudaEvent start;
CudaEvent end;
};
//! @param sessionConfig Configuration of the session,
//! @param modelConfig Description of the model,
//! @param worldConfig Description of the environment,
//! @param engineBuffer The compiled TensorRT engine (const void*),
//! @param engineSize The size in bytes of the TensorRT engine (size_t),
//! @param logger The optional logger.
GptSession(Config const& sessionConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
void const* engineBuffer, std::size_t engineSize, LoggerPtr logger = nullptr);
GptSession(Config const& sessionConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
std::vector<uint8_t> const& engineBuffer, LoggerPtr logger = nullptr)
: GptSession(
sessionConfig, modelConfig, worldConfig, engineBuffer.data(), engineBuffer.size(), std::move(logger))
{
}
GptSession(Config const& sessionConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
std::string const& engineFile, LoggerPtr logger = nullptr)
: GptSession(sessionConfig, modelConfig, worldConfig, utils::loadEngine(engineFile), std::move(logger))
{
}
[[nodiscard]] nvinfer1::ILogger& getLogger() const;
[[nodiscard]] BufferManager const& getBufferManager() const;
[[nodiscard]] ModelConfig const& getModelConfig() const
{
return mModelConfig;
}
[[nodiscard]] WorldConfig const& getWorldConfig() const
{
return mWorldConfig;
}
[[nodiscard]] int getDevice() const noexcept
{
return mDevice;
}
[[nodiscard]] bool getNormalizeLogProbs() const noexcept
{
return mNormalizeLogProbs;
}
[[nodiscard]] nvinfer1::IEngineInspector& getEngineInspector() const;
[[nodiscard]] nvinfer1::DataType getLogitDataType() const;
//! @brief This function performs the generation loop.
//! @details Given input tensors to read from, output tensors to populate, that member function
//! can be produced or each sequence has reached completion (due to the production
//! will run the generation loop until it reaches the maximum number of tokens that
//! of "end-of-sequence" or a word in the list of "stop words"). The pseudo-code of
//! that function looks like (member function names were changed to keep the
//! presentation simple):
//!
//! ```cpp
//! // Have all the sequences in the batch reached completion?
//! bool allFinished = false;
//!
//! // Until all sequences are finished or the number of steps reaches the limit...
//! for (int step = 0; !allFinished && step < maxNewTokens; ++step) {
//!
//! // Trigger the computation of the logits...
//! computeLogits(...);
//!
//! // Run the sampling to produce a token (for each active sequence) from the logits.
//! allFinished = generateTokensFromLogits(...);
//!
//! // Callback to stream the output tokens while the generation loop continues.
//! onTokenGenerated(...);
//! }
//! ```
void generate(GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig,
std::shared_ptr<GenerationProfiler> const generationProfiler = nullptr);
//! @brief Set LayerProfiler to collect performance per layer.
void setLayerProfiler();
//! @brief Print profile information per layer.
[[nodiscard]] std::string getLayerProfileInfo() const;
private:
[[nodiscard]] bool useCudaGraphs()
{
return !mCudaGraphInstances.empty();
}
void generateBatched(std::vector<GenerationOutput>& microBatchesOutputs,
std::vector<GenerationInput> const& microBatchesInputs, SamplingConfig const& samplingConfig,
TokenGeneratedCallback const& onTokenGenerated, std::shared_ptr<GenerationProfiler> const generationProfiler);
void setup(Config const& sessionConfig);
void createContexts();
void createBuffers(SizeType32 numMicroBatches);
void createDecoders(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 maxAttentionWindow,
SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, nvinfer1::DataType logitsType, bool decoderPerRequest,
SizeType32 numMicroBatches, DecodingMode const& decodingMode);
void createKvCacheManager(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 maxAttentionWindow,
SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, KvCacheConfig const& config);
void createCustomAllReduceWorkspace(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 maxSequenceLength);
void executeContextStep(std::vector<GenerationInput> const& generationBatchesInputs,
std::vector<SizeType32> const& generationBatchesOffsets, KvCacheManager const* kvCacheManager);
SizeType32 executeGenerationStep(SizeType32 step, std::vector<GenerationInput> const& microBatchesInputs,
std::vector<GenerationOutput>& microBatchesOutputs, std::vector<SizeType32> const& microBatchOffsets,
KvCacheManager* kvCacheManager, std::vector<bool>& microBatchesFinished);
//! @brief Execute decoder on last PP rank, receive decoder output on other PP ranks.
void decoderStepAsync(SizeType32 decoderStep, SizeType32 microBatchId);
//! @brief Synchronize with the decoder and return the `shouldStop` flag.
bool shouldStopSync(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 microBatchId);
//! @brief Collect final output ids and log probs on last PP rank and send them to first PP rank.
//! @details Receives are asynchronous on host, so synchronization is required before access.
void finalize(SizeType32 microBatchId);
void kvCacheAddSequences(SizeType32 beamWidth, SizeType32 microBatchId, SizeType32 firstBatchIdx);
//! @brief Populate outputIds and return reference to newTokens tensor
ITensor::SharedPtr initDecoder(ITensor& outputIds, GenerationInput const& inputs, GenerationOutput const& outputs,
SamplingConfig const& samplingConfig, SizeType32 microBatchId) const;
TokenGeneratedCallback createOnTokenGeneratedCallback(GenerationOutput& outputs);
class CudaGraphExecutor
{
public:
CudaGraphExecutor() = default;
~CudaGraphExecutor()
{
try
{
clear();
}
catch (std::exception& e)
{
TLLM_LOG_EXCEPTION(e);
}
}
bool hasInstance()
{
return mInstance != nullptr;
}
void clear();
void prepareNextGraph(TllmRuntime const& runtime, SizeType32 nextContextId);
void launch(CudaStream const& stream);
private:
void create(cudaGraph_t const& graph);
bool update(cudaGraph_t const& graph);
void uploadToStream(CudaStream const& stream);
cudaGraphExec_t mInstance;
};
class MicroBatchConfig
{
public:
MicroBatchConfig()
: numCtxBatches{1}
, numGenBatches{1}
, ctxBatchSize{0}
, genBatchSize{0}
{
}
explicit MicroBatchConfig(SizeType32 maxBatchSize, SizeType32 pipelineParallelism,
std::optional<SizeType32> genMicroBatchSize, std::optional<SizeType32> ctxMicroBatchSize);
constexpr SizeType32 numCtxPerGen() const
{
return numCtxBatches / numGenBatches;
}
//! @details flip-flop between 2 graph instances for each generation batch.
constexpr SizeType32 getGenGraphId(SizeType32 flipFlopId, SizeType32 generationBatchId) const
{
return flipFlopId * numGenBatches + generationBatchId;
}
SizeType32 numCtxBatches;
SizeType32 numGenBatches;
SizeType32 ctxBatchSize;
SizeType32 genBatchSize;
};
friend class batch_manager::TrtGptModelV1;
private:
ModelConfig const mModelConfig;
WorldConfig const mWorldConfig;
int mDevice{-1};
std::shared_ptr<NcclCommunicator> mPipelineComm;
std::shared_ptr<CudaStream> mCommStream;
CudaEvent mCommEvent{};
std::shared_ptr<AllReduceBuffers> mAllReduceBuffers;
SizeType32 mDecoderMaxSequenceLength{};
SizeType32 mDecoderMaxAttentionWindow{};
SizeType32 mDecoderSinkTokenLength{};
LoggerPtr mLogger;
std::shared_ptr<TllmRuntime> mRuntime;
std::shared_ptr<KvCacheManager> mKvCacheManager;
MicroBatchConfig mMicroBatchConfig;
// for each micro batch
std::vector<std::shared_ptr<IStatefulGptDecoder>> mDecoders;
std::vector<std::shared_ptr<RuntimeBuffers>> mBuffers;
std::vector<CudaEvent> mReceivedEvents;
bool mCudaGraphMode{false};
// ping-pong instances
std::vector<CudaGraphExecutor> mCudaGraphInstances;
bool mNormalizeLogProbs = true;
};
} // namespace tensorrt_llm::runtime