mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
227 lines
6.5 KiB
C++
227 lines
6.5 KiB
C++
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/tensor.h"
|
|
#include "tensorrt_llm/common/cudaBf16Wrapper.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/stringUtils.h"
|
|
|
|
#include "stdlib.h"
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_runtime_api.h>
|
|
#include <numeric>
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#if !defined(_WIN32)
|
|
#include <dirent.h>
|
|
#endif // !defined(_WIN32)
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace common
|
|
{
|
|
|
|
Tensor::Tensor()
|
|
: // a none tensor.
|
|
where(MEMORY_CPU)
|
|
, type(TYPE_INVALID)
|
|
, shape({})
|
|
, data(nullptr)
|
|
{
|
|
}
|
|
|
|
Tensor::Tensor(MemoryType _where, DataType _type, std::vector<size_t> const& _shape, void const* _data)
|
|
: where(_where)
|
|
, type(_type)
|
|
, shape(_shape)
|
|
, data(_data)
|
|
{
|
|
}
|
|
|
|
size_t Tensor::size() const
|
|
{
|
|
if (data == nullptr || shape.size() == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
return std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());
|
|
}
|
|
|
|
size_t Tensor::sizeBytes() const
|
|
{
|
|
return size() * Tensor::getTypeSize(type);
|
|
}
|
|
|
|
std::string Tensor::whereToString() const
|
|
{
|
|
static const std::unordered_map<MemoryType, std::string> mem_to_string{
|
|
{MEMORY_CPU, "CPU"}, {MEMORY_CPU_PINNED, "CPU_PINNED"}, {MEMORY_GPU, "GPU"}};
|
|
return mem_to_string.at(where);
|
|
}
|
|
|
|
std::string Tensor::toString() const
|
|
{
|
|
std::string memtype_str = whereToString();
|
|
|
|
static const std::unordered_map<DataType, std::string> type_to_string{
|
|
{TYPE_BOOL, "BOOL"},
|
|
{TYPE_UINT8, "UINT8"},
|
|
{TYPE_UINT16, "UINT16"},
|
|
{TYPE_UINT32, "UINT32"},
|
|
{TYPE_UINT64, "UINT64"},
|
|
{TYPE_INT8, "INT8"},
|
|
{TYPE_INT16, "INT16"},
|
|
{TYPE_INT32, "INT32"},
|
|
{TYPE_INT64, "INT64"},
|
|
{TYPE_BF16, "BF16"},
|
|
{TYPE_FP16, "FP16"},
|
|
{TYPE_FP32, "FP32"},
|
|
{TYPE_FP64, "FP64"},
|
|
{TYPE_BYTES, "BYTES"},
|
|
{TYPE_INVALID, "INVALID"},
|
|
{TYPE_FP8_E4M3, "E4M3"},
|
|
{TYPE_VOID, "VOID"},
|
|
};
|
|
return fmtstr("Tensor[where=%s, type=%s, shape=%s, data=%p]", memtype_str.c_str(), type_to_string.at(type).c_str(),
|
|
vec2str(shape).c_str(), data);
|
|
}
|
|
|
|
size_t Tensor::getTypeSize(DataType type)
|
|
{
|
|
static const std::unordered_map<DataType, size_t> type_map{{TYPE_BOOL, sizeof(bool)}, {TYPE_BYTES, sizeof(char)},
|
|
{TYPE_UINT8, sizeof(uint8_t)}, {TYPE_UINT16, sizeof(uint16_t)}, {TYPE_UINT32, sizeof(uint32_t)},
|
|
{TYPE_UINT64, sizeof(uint64_t)}, {TYPE_INT8, sizeof(int8_t)}, {TYPE_INT16, sizeof(int16_t)},
|
|
{TYPE_INT32, sizeof(int32_t)}, {TYPE_INT64, sizeof(int64_t)},
|
|
#ifdef ENABLE_BF16
|
|
{TYPE_BF16, sizeof(__nv_bfloat16)},
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
{TYPE_FP8_E4M3, sizeof(__nv_fp8_e4m3)},
|
|
#endif
|
|
{TYPE_FP16, sizeof(half)}, {TYPE_FP32, sizeof(float)}, {TYPE_FP64, sizeof(double)}};
|
|
return type_map.at(type);
|
|
}
|
|
|
|
std::string Tensor::getNumpyTypeDesc(DataType type) const
|
|
{
|
|
static const std::unordered_map<DataType, std::string> type_map{{TYPE_INVALID, "x"}, {TYPE_BOOL, "?"},
|
|
{TYPE_BYTES, "b"}, {TYPE_UINT8, "u1"}, {TYPE_UINT16, "u2"}, {TYPE_UINT32, "u4"}, {TYPE_UINT64, "u8"},
|
|
{TYPE_INT8, "i1"}, {TYPE_INT16, "i2"}, {TYPE_INT32, "i4"}, {TYPE_INT64, "i8"}, {TYPE_FP16, "f2"},
|
|
{TYPE_FP32, "f4"}, {TYPE_FP64, "f8"}};
|
|
|
|
if (type == TYPE_BF16)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"getNumpyTypeDesc(TYPE_BF16) returns an invalid type 'x' since Numpy doesn't "
|
|
"support bfloat16 as of now, it will be properly extended if numpy supports. "
|
|
"Please refer for the discussions https://github.com/numpy/numpy/issues/19808.");
|
|
}
|
|
|
|
return type_map.count(type) > 0 ? type_map.at(type) : "x";
|
|
}
|
|
|
|
Tensor Tensor::slice(std::vector<size_t> shape, size_t offset) const
|
|
{
|
|
if (this->data != nullptr)
|
|
{
|
|
size_t n_elts = this->size();
|
|
size_t n_sliced_elts = std::accumulate(shape.begin(), shape.end(), size_t{1}, std::multiplies<size_t>());
|
|
TLLM_CHECK_WITH_INFO(n_sliced_elts + offset <= n_elts,
|
|
fmtstr("The number (%ld) of elements of sliced tensor exceeds that (%ld) of the original tensor",
|
|
n_sliced_elts + offset, n_elts));
|
|
}
|
|
return Tensor(this->where, this->type, shape, this->getPtrWithOffset(offset));
|
|
}
|
|
|
|
TensorMap::TensorMap(std::unordered_map<std::string, Tensor> const& tensor_map)
|
|
{
|
|
for (auto& kv : tensor_map)
|
|
{
|
|
if (kv.second.isValid())
|
|
{
|
|
insert(kv.first, kv.second);
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_DEBUG(fmtstr("%s is not a valid tensor, skipping insert into TensorMap", kv.first.c_str()));
|
|
}
|
|
}
|
|
}
|
|
|
|
TensorMap::TensorMap(std::vector<Tensor> const& tensor_map)
|
|
{
|
|
for (size_t i = 0; i < tensor_map.size(); i++)
|
|
{
|
|
insert(std::to_string(i), tensor_map[i]);
|
|
}
|
|
}
|
|
|
|
TensorMap::TensorMap(std::initializer_list<std::pair<std::string, Tensor>> tensor_map)
|
|
{
|
|
for (auto& pair : tensor_map)
|
|
{
|
|
if (pair.second.isValid())
|
|
{
|
|
insert(pair.first, pair.second);
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_DEBUG(fmtstr("%s is not a valid tensor, skipping insert into TensorMap", pair.first.c_str()));
|
|
}
|
|
}
|
|
}
|
|
|
|
TensorMap::~TensorMap()
|
|
{
|
|
tensor_map_.clear();
|
|
}
|
|
|
|
std::vector<std::string> TensorMap::keys() const
|
|
{
|
|
std::vector<std::string> key_names;
|
|
for (auto& kv : tensor_map_)
|
|
{
|
|
key_names.push_back(kv.first);
|
|
}
|
|
return key_names;
|
|
}
|
|
|
|
std::string TensorMap::toString()
|
|
{
|
|
std::stringstream ss;
|
|
ss << "{";
|
|
std::vector<std::string> key_names = keys();
|
|
for (size_t i = 0; i < tensor_map_.size(); ++i)
|
|
{
|
|
ss << key_names[i] << ": " << at(key_names[i]).toString();
|
|
if (i < tensor_map_.size() - 1)
|
|
{
|
|
ss << ", ";
|
|
}
|
|
}
|
|
ss << "}";
|
|
return ss.str();
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace tensorrt_llm
|