TensorRT-LLMs/cpp/tensorrt_llm/kernels/beamSearchKernels.h
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

113 lines
4.9 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/kernels/decodingCommon.h"
namespace tensorrt_llm
{
namespace kernels
{
static constexpr int nMaxBeamWidth = 64; // max beam width supported now
static constexpr int nBlockSizeForSmallBeamWidth = 256;
static constexpr int nMaxVocabPartForStage1FastKernel = 128;
struct BeamHypotheses
{
// clang-format off
// BS: batch_size, BM: beam_width, MSL: max_seq_length
// %%: parameter name when dynamic_decoder.forward() / gather_tree() are called in [generation.py] (python workflow)
// Candidate beams: a beam which generates end_id or its sequence length reaches MSL
// Candidate-Beam-Array (CBA): The arrays (size: BM*2) to place the candidate beams and related information
// Scalar values
bool bReturnNormedScore{false}; // return normed_score / cum_log_probs, useless yet
int nBatchSize{0}; //
int nBeamWidth{0}; //
int nIte{0}; // index of local_batch, always be 0 when pp_size==1
int nBatchSizeLocal{0}; //
int nMaxSeqLen{0}; //
int nVocabSize{0}; // vocab_size_padded
// Pointers from SamplingConfig
float const* diversityRates{nullptr}; // [BS]
float const* lengthPenalties{nullptr}; // [BS]
int const* earlyStoppings{nullptr}; // [BS]
// Pointers from input
int const* inputLengths{nullptr}; // [BS, BM] %% context_length
int const* endIds{nullptr}; // [BS, BM] %% self.end_ids
// Pointers for output
int* outputIds{nullptr}; // [BS, BM, MSL] %% self.output_ids
float* logProbs{nullptr}; // [MSL, BS, BM] %% self.log_probs_tiled
int* sequenceLengths{nullptr}; // [BS, BM] %% self.sequence_length_buffer
float* cumLogProbs{nullptr}; // [BS, BM] %% self.cum_log_probs
// Pointers of CBA
int* outputIdsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_output_ids_cba
float* logProbsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_log_probs_cba
int* sequenceLengthsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_seq_len_cba
float* cumLogProbsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs_cba
float* normedScoresCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores_cba
int* numBeamsCBA{nullptr}; // [BS] %% self.beam_hyps_num_beams number of beams in CBA
float* minNormedScoresCBA{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores worst score in CBA
// Pointers related to beam search process, they are initialized in those two functions:
// [gptDecoder.cpp] GptDecoder<T>::forward or [dynamicDecodeOp.cpp] FtDynamicDecode<T>::forward
bool* batchDones{nullptr}; // [BS] %% self.beam_hyps_is_done whether a whole batch is finished
FinishedState* finished{nullptr}; // [BS*BM] %% self.finished whether and how a beam is finished
// Pointers for backtrack of the beams, they are relocated in [dynamicDecodeLayer.cpp] DynamicDecodeLayer<T>::prepareIdsPtrs
int** outputIdsPtr{nullptr}; // [BS][BM, MSL] %% self.output_ids
int** parentIdsPtr{nullptr}; // [BS][BM, MSL] %% self.parent_ids
// Pointers for gather_tree(), read the unfinished beams from them and write to CBA for the final selection
int const* outputIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.output_ids
int const* parentIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.parent_ids
// clang-format on
};
__inline__ int padToNextPowerOfTwo(int const n)
{
// Pad n up to the nearest power of 2
int recursor = n - 1;
int res = 2;
while (recursor >>= 1)
res <<= 1;
return res;
}
template <typename T>
__device__ __forceinline__ T applyLengthPenalty(T const log_prob, int const length, float const length_penalty)
{
// score = log(prob) / (length ^ length_penalty)
if (length_penalty == 0.0f || length == 1)
{
return log_prob;
}
return log_prob / static_cast<T>(powf(static_cast<float>(length), length_penalty));
}
template <typename T>
void invokeTopkSoftMax(T const* logits, T const* bias, void* workspace, BeamHypotheses& bh, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm