TensorRT-LLMs/cpp/tensorrt_llm/kernels/unfusedAttentionKernels.h
2024-05-07 23:34:28 +08:00

212 lines
9.0 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/kernels/gptKernels.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include <cuda_runtime_api.h>
namespace tensorrt_llm
{
namespace kernels
{
template <typename T>
void invokeAddQKVBiasIA3Transpose(T* q_buf, T* k_buf, T* v_buf, T* Q, T const* bias_Q, T* K, T const* bias_K, T* V,
T const* bias_V, int const batch_size, int const seq_len, int const head_num, int const size_per_head,
int const* ia3_tasks, T const* ia3_key_weights, T const* ia3_value_weights, cudaStream_t stream);
template <typename T, typename T_IN>
struct MaskedSoftmaxParam
{
// Common parameters.
T* attention_score = nullptr; // (batch_size, head_num, q_length, k_length)
const T_IN* qk = nullptr; // (batch_size, head_num, q_length, k_length)
T const* attention_mask = nullptr; // (batch_size, q_length, k_length)
int batch_size = 0;
int q_length = 0;
int k_length = 0;
int num_heads = 0;
T qk_scale = T(0.0f);
// Optional parameters that depend on the type of attention.
// The slopes of the linear position bias of ALiBi.
T const* linear_bias_slopes = nullptr; // (head_num,), optional
};
enum class KvCacheDataType
{
BASE = 0,
INT8,
FP8
};
enum class RotaryPositionEmbeddingType
{
NONE = 0,
GPTJ,
GPT_NEOX,
};
template <typename T, typename KVCacheBuffer>
struct QKVPreprocessingParams
{
// Buffers.
T* QKV;
// Only used by fp8 quantized output currently.
void* QuantizedQKV;
T* Q;
KVCacheBuffer const kv_cache_buffer;
T const* qkv_bias;
int const* seq_lens;
int const* cache_seq_lens;
int const* cu_seq_lens;
float const* rotary_embedding_inv_freq;
float2 const* rotary_coef_cache_buffer;
float const* kvScaleOrigQuant;
int const* spec_decoding_position_offsets;
// Scalars.
int const batch_size;
int const max_input_seq_len;
int const max_kv_seq_len;
int const cyclic_kv_cache_len;
int const sink_token_len;
int const token_num;
int const head_num;
int const kv_head_num;
int const qheads_per_kv_head;
int const size_per_head;
int const rotary_embedding_dim;
float const rotary_embedding_base;
RotaryScalingType const rotary_scale_type;
float rotary_embedding_scale;
int const rotary_embedding_max_positions;
PositionEmbeddingType const position_embedding_type;
bool const position_shift_enabled;
const KvCacheDataType cache_type;
bool const enable_paged_kv_fmha;
bool const quantized_fp8_output;
int const multi_processor_count;
int const rotary_vision_start;
int const rotary_vision_length;
// Pre-compute on host.
int half_rotary_dim;
int q_hidden_size;
int kv_hidden_size;
int hidden_size;
void setCommonParameters()
{
half_rotary_dim = rotary_embedding_dim / 2;
q_hidden_size = head_num * size_per_head;
kv_hidden_size = kv_head_num * size_per_head;
hidden_size = q_hidden_size + 2 * kv_hidden_size;
}
};
template <typename T, typename T_IN>
void invokeMaskedSoftmax(MaskedSoftmaxParam<T, T_IN>& param, cudaStream_t stream);
template <typename T>
void invokeTransposeQKV(T* dst, T* src, int const batch_size, int const seq_len, int const head_num,
int const size_per_head, float const* scale, int const int8_mode, cudaStream_t stream);
template <typename T>
void invokeAddQKVBiasIA3RebuildPadding(T* Q, T const* bias_Q, T* K, T const* bias_K, T* V, T const* bias_V, T* q_buf,
T* k_buf, T* v_buf, int const batch_size, int const seq_len, int const head_num, int const size_per_head,
int const valid_word_num, int const* mask_offset, int const* ia3_tasks, T const* ia3_key_weights,
T const* ia3_value_weights, cudaStream_t stream);
template <typename T>
void invokeTransposeAttentionOutRemovePadding(T* src, T* dst, int const valid_word_num, int const batch_size,
int const seq_len, int const head_num, int const size_per_head, int const* mask_offset, float const* scale,
int const int8_mode, cudaStream_t stream);
template <typename T>
void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, T const* qkv_bias, int const* seq_lens,
int const* padding_offset, int const batch_size, int const seq_len, int const token_num, int const head_num,
int const kv_head_num, int const size_per_head, int const rotary_embedding_dim, float rotary_embedding_base,
const RotaryScalingType rotary_scale_type, float rotary_embedding_scale, int const rotary_embedding_max_positions,
PositionEmbeddingType const position_embedding_type, float const* scale, int const int8_mode, cudaStream_t stream);
template <typename T>
void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, T const* qkv_bias, int const* seq_lens,
int const* padding_offset, int const batch_size, int const seq_len, int const token_num, int const head_num,
int const kv_head_num, int const size_per_head, cudaStream_t stream)
{
invokeAddFusedQKVBiasTranspose(q_buf, k_buf, v_buf, QKV, qkv_bias, seq_lens, padding_offset, batch_size, seq_len,
token_num, head_num, kv_head_num, size_per_head, 0, false, (float*) nullptr, 0, stream);
}
template <typename T>
void invokeAddFusedQKVBiasTranspose(T* q_buf, T* k_buf, T* v_buf, T* QKV, int const* seq_lens,
int const* padding_offset, int const batch_size, int const seq_len, int const token_num, int const head_num,
int const kv_head_num, int const size_per_head, int const rotary_embedding_dim, float rotary_embedding_base,
const RotaryScalingType rotary_scale_type, float rotary_embedding_scale, int const rotary_embedding_max_positions,
PositionEmbeddingType const position_embedding_type, float const* scale, int const int8_mode, cudaStream_t stream)
{
invokeAddFusedQKVBiasTranspose(q_buf, k_buf, v_buf, QKV, (T const*) nullptr, seq_lens, padding_offset, batch_size,
seq_len, token_num, head_num, kv_head_num, size_per_head, rotary_embedding_dim, rotary_embedding_base,
rotary_scale_type, rotary_embedding_scale, rotary_embedding_max_positions, position_embedding_type, scale,
int8_mode, stream);
}
template <typename T, typename KVCacheBuffer>
void invokeTranspose4dBatchMajor(T const* k_src, T const* v_src, KVCacheBuffer& kvTable, int const local_batch_size,
int const seq_len, int const max_attention_window_size, int const size_per_head, int const local_head_num,
const KvCacheDataType cache_type, float const* kvScaleOrigQuant, int const* sequence_lengths, cudaStream_t stream);
template <typename T, typename T_cache, typename KVCacheBuffer>
void invokeApplyBiasRopeUpdateKVCacheDispatch(QKVPreprocessingParams<T, KVCacheBuffer> params, cudaStream_t stream);
// NOTE: this kernel is in-place, QKV will be modified, if other kernels need that, may need copy or use before it.
template <typename T, typename KVCacheBuffer>
void invokeQKVPreprocessing(QKVPreprocessingParams<T, KVCacheBuffer> params, cudaStream_t stream)
{
params.setCommonParameters();
if (params.cache_type == KvCacheDataType::INT8)
{
invokeApplyBiasRopeUpdateKVCacheDispatch<T, int8_t, KVCacheBuffer>(params, stream);
}
#ifdef ENABLE_FP8
else if (params.cache_type == KvCacheDataType::FP8)
{
invokeApplyBiasRopeUpdateKVCacheDispatch<T, __nv_fp8_e4m3, KVCacheBuffer>(params, stream);
}
#endif // ENABLE_FP8
else
{
invokeApplyBiasRopeUpdateKVCacheDispatch<T, T, KVCacheBuffer>(params, stream);
}
}
template <typename T, typename BT>
void invokeAddRelativeAttentionBiasUnaligned(T* qk_buf, const BT* relative_attention_bias, int const batch_size,
int const head_num, int const seq_len, int const max_seq_len, cudaStream_t stream, bool implicit = false,
int num_buckets = 0, int max_distance = 0, bool bidirectional = true);
template <typename T, typename KVCacheBuffer>
void invokeShiftKCache(KVCacheBuffer const& kvCacheBuffer, KVLinearBuffer const& shiftKCacheBuffer,
const KvCacheDataType cache_type, int const sizePerHead, int const timestep, int const batch_beam,
int const kv_head_num, int const beam_width, int const maxKCacheLen, int const sinkTokenLen,
float const* kScaleQuantOrig, int const* sequence_lengths, int const* input_lengths, int const rotary_embedding_dim,
float rotary_embedding_base, RotaryScalingType const rotary_scale_type, float rotary_embedding_scale,
int const rotary_embedding_max_positions, PositionEmbeddingType const position_embedding_type, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm