TensorRT-LLMs/cpp/tensorrt_llm/runtime/transformerBuffers.cpp
Kaiyu Xie bf0a5afc92
Update TensorRT-LLM (#1598)
* Update TensorRT-LLM
2024-05-14 16:43:41 +08:00

792 lines
33 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/transformerBuffers.h"
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/common/stlUtils.h"
#include "tensorrt_llm/runtime/runtimeBuffers.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
#include <cstdlib> // std::getenv
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
TransformerBuffers::TransformerBuffers()
{
pastKeyValueLengths = nullptr;
attentionMask = nullptr;
positionIds = nullptr;
presentKeysVals.clear();
presentKeysValsAlt.clear();
kvCacheBlockPoolPointers = nullptr;
kvCacheBlockOffsetsHost = nullptr;
kvCacheBlockOffsetsDevice = nullptr;
}
TransformerBuffers::TransformerBuffers(
TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK(modelConfig.isTransformerBased());
auto& manager = runtime.getBufferManager();
auto& engine = runtime.getEngine();
auto const localNbLayers = modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism());
auto firstAttentionLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
auto const& layerTypes = modelConfig.getLayerTypes();
if (!layerTypes.empty())
{
firstAttentionLayerId
= std::find(layerTypes.begin(), layerTypes.end(), ModelConfig::LayerType::kATTENTION) - layerTypes.begin();
}
nvinfer1::DataType kvDtype;
if (modelConfig.usePagedKvCache())
{
kvDtype = modelConfig.getKvDataType();
}
else
{
kvDtype = modelConfig.getQuantMode().hasFp8KvCache()
? nvinfer1::DataType::kFP8
: engine.getTensorDataType(("present_key_value_" + std::to_string(firstAttentionLayerId)).c_str());
}
if (modelConfig.usePagedKvCache())
{
auto const kvCacheBlockOffsetsType = engine.getTensorDataType("kv_cache_block_offsets");
kvCacheBlockOffsetsHost = manager.emptyTensor(MemoryType::kCPU, kvCacheBlockOffsetsType);
kvCacheBlockOffsetsDevice = manager.emptyTensor(MemoryType::kGPU, kvCacheBlockOffsetsType);
}
else
{
presentKeysVals = utils::createBufferVector(runtime, localNbLayers, MemoryType::kGPU, kvDtype);
}
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
maxAttentionWindows = BufferManager::cpu(ITensor::makeShape({localNbLayers}), nvinfer1::DataType::kINT32);
sinkTokenLengths = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
}
else
{
char* disableReuseChar = std::getenv("TRTLLM_DISABLE_OOTB_KVCACHE_REUSE");
bool reuse = (disableReuseChar == nullptr || std::string(disableReuseChar) != "ON");
int32_t extraKeyValBufferNum = reuse ? 1 : localNbLayers;
presentKeysValsAlt = utils::createBufferVector(runtime, extraKeyValBufferNum, MemoryType::kGPU, kvDtype);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::reshape(
GenerationConfig const& generationConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const maxInputLength = generationConfig.maxInputLength;
auto const maxAttentionWindow = generationConfig.maxAttentionWindow;
auto const kvCacheReserve = ITensor::makeShape(
{batchSize, 2, modelConfig.getNbKvHeads(), maxAttentionWindow, modelConfig.getSizePerHead()});
auto const kvCacheShape
= ITensor::makeShape({batchSize, 2, modelConfig.getNbKvHeads(), maxInputLength, modelConfig.getSizePerHead()});
if (modelConfig.usePagedKvCache())
{
auto cacheBlockOffsetsShape = kvCacheBlockOffsetsHost->getShape();
if (cacheBlockOffsetsShape.nbDims > 0)
{
cacheBlockOffsetsShape.d[0] = batchSize;
kvCacheBlockOffsetsHost->reshape(cacheBlockOffsetsShape);
kvCacheBlockOffsetsDevice->reshape(cacheBlockOffsetsShape);
}
else
{
TLLM_LOG_DEBUG("kvCacheBlockOffsets not allocated yet");
}
}
else
{
utils::reshapeBufferVector(presentKeysVals, kvCacheReserve);
}
auto const localNbLayers = modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism());
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths->reshape(ITensor::makeShape({batchSize}));
maxAttentionWindows->reshape(ITensor::makeShape({localNbLayers}));
sinkTokenLengths->reshape(ITensor::makeShape({1}));
}
else
{
utils::reshapeBufferVector(presentKeysValsAlt, kvCacheShape);
// present KV cache tensors will be reshaped by shape inference.
// reshape to the required shape here to make context batch slicing work correctly.
utils::reshapeBufferVector(presentKeysVals, kvCacheShape);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::reshapeKvTensors(
SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxBlocksPerSeq, runtime::TllmRuntime const& runtime)
{
auto const& manager = runtime.getBufferManager();
auto const cacheBlockOffsetsShape = ITensor::makeShape({maxBatchSize * maxBeamWidth, 2, maxBlocksPerSeq});
kvCacheBlockOffsetsHost->reshape(cacheBlockOffsetsShape);
manager.setZero(*kvCacheBlockOffsetsHost);
kvCacheBlockOffsetsDevice->reshape(cacheBlockOffsetsShape);
manager.setZero(*kvCacheBlockOffsetsDevice);
}
void TransformerBuffers::setKvPoolPointers(KvCacheManager const* kvCacheManager)
{
kvCacheBlockPoolPointers = kvCacheManager->getBlockPoolPointers();
}
TransformerBuffers TransformerBuffers::sliceTo(
GenerationConfig const& generationConfig, ModelConfig const& modelConfig, SizeType32 offset, SizeType32 batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TransformerBuffers buffers;
auto const generationBatchSize = generationConfig.batchSize;
if (modelConfig.usePagedKvCache())
{
auto const& realCacheBlockOffsetsShape = kvCacheBlockOffsetsHost->getShape();
auto const maxBlocksPerSeq = realCacheBlockOffsetsShape.d[2];
// enable slicing by moving generationBatchSize to first dim
auto const fakeCacheBlockOffsetsShape = ITensor::makeShape({generationBatchSize, 2, maxBlocksPerSeq});
TensorPtr kvCacheBlockOffsetsHostView{ITensor::view(kvCacheBlockOffsetsHost, fakeCacheBlockOffsetsShape)};
TensorPtr kvCacheBlockOffsetsDeviceView{ITensor::view(kvCacheBlockOffsetsDevice, fakeCacheBlockOffsetsShape)};
// slice and reshape to correct shape
auto const cacheBlockOffsetsShape = ITensor::makeShape({batchSize, 2, maxBlocksPerSeq});
buffers.kvCacheBlockOffsetsHost = ITensor::slice(kvCacheBlockOffsetsHostView, offset, batchSize);
buffers.kvCacheBlockOffsetsHost->reshape(cacheBlockOffsetsShape);
buffers.kvCacheBlockOffsetsDevice = ITensor::slice(kvCacheBlockOffsetsDeviceView, offset, batchSize);
buffers.kvCacheBlockOffsetsDevice->reshape(cacheBlockOffsetsShape);
buffers.kvCacheBlockPoolPointers = kvCacheBlockPoolPointers;
}
else
{
buffers.presentKeysVals = utils::sliceBufferVector(presentKeysVals, offset, batchSize);
}
if (modelConfig.useGptAttentionPlugin())
{
buffers.pastKeyValueLengths = ITensor::slice(pastKeyValueLengths, offset, batchSize);
buffers.maxAttentionWindows = maxAttentionWindows;
buffers.sinkTokenLengths = sinkTokenLengths;
}
else
{
buffers.presentKeysValsAlt = utils::sliceBufferVector(presentKeysValsAlt, offset, batchSize);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
return buffers;
}
static std::vector<SizeType32> getPositionIdsContextPhaseGlm(SizeType32 const& batchSize,
SizeType32 const& maxInputLength, SizeType32 const* pInputLengths, bool useGptAttentionPlugin, bool usePackedInput)
{
TLLM_CHECK(pInputLengths != nullptr);
std::vector<SizeType32> positionIdsVec(1, 0);
if (useGptAttentionPlugin)
{
if (usePackedInput)
{
std::vector<int> pInputLengthsAcc = std::vector<int>(batchSize + 1, 0);
for (int i = 0; i < batchSize; ++i)
{
pInputLengthsAcc[i + 1] = pInputLengthsAcc[i] + pInputLengths[i];
}
auto const size = 1 * 2 * pInputLengthsAcc[batchSize];
positionIdsVec.resize(size, 0);
for (SizeType32 b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + pInputLengthsAcc[b];
auto const length = pInputLengths[b];
std::iota(pIdB, pIdB + length, 0);
pIdB[length - 1] = length - 2;
pIdB[length - 1 + pInputLengthsAcc[batchSize]] = 1;
}
}
else
{
auto const size = batchSize * 2 * maxInputLength;
positionIdsVec.resize(size, 0);
for (SizeType32 b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + b * 2 * maxInputLength;
auto const length = pInputLengths[b];
std::iota(pIdB, pIdB + length, 0);
pIdB[length - 1] = length - 2;
pIdB[length - 1 + maxInputLength] = 1;
}
}
}
else
{
TLLM_THROW("Unsupported model without GPT Attention Plugin");
}
return positionIdsVec;
}
void TransformerBuffers::prepareContextStep(RuntimeBuffers* runtimeBuffers, TensorPtr const& inputIds,
TokenIdType const padId, BufferManager& manager, KvCacheManager const* kvCacheManager, SizeType32 firstBatchSlotIdx,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& generationConfig = runtimeBuffers->generationConfig;
auto& contextLengthsHost = runtimeBuffers->contextLengthsHost;
auto& requestTypes = runtimeBuffers->requestTypes;
auto& hiddenStates = runtimeBuffers->hiddenStates;
auto& promptTuningTasksHost = runtimeBuffers->promptTuningTasksHost;
auto& promptTuningParams = runtimeBuffers->promptTuningParams;
auto& stream = manager.getStream();
SizeType32 const batchSize = generationConfig.batchSize;
SizeType32 const maxInputLength = generationConfig.maxInputLength;
auto const& inputShape = inputIds->getShape();
// get local number of layers.
auto const localNbLayers = modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism());
if (modelConfig.useGptAttentionPlugin())
{
auto pastKeyValueLengthsPtr = bufferCast<SizeType32>(*pastKeyValueLengths);
TLLM_CHECK(pastKeyValueLengths->getSize() == static_cast<std::size_t>(batchSize));
auto RequestTypesPtr = bufferCast<int32_t>(*requestTypes);
TLLM_CHECK(requestTypes->getSize() == static_cast<std::size_t>(batchSize));
std::fill_n(RequestTypesPtr, batchSize, 0);
auto maxAttentionWindowsPtr = bufferCast<SizeType32>(*maxAttentionWindows);
std::fill_n(maxAttentionWindowsPtr, localNbLayers, generationConfig.maxAttentionWindow);
bufferCast<SizeType32>(*sinkTokenLengths)[0] = generationConfig.sinkTokenLength;
auto const contextLengthsHostPtr = bufferCast<SizeType32 const>(*contextLengthsHost);
auto const modelVariant = modelConfig.getModelVariant();
if (modelVariant == ModelConfig::ModelVariant::kGpt
|| modelVariant == ModelConfig::ModelVariant::kRecurrentGemma)
{
auto const inputSize = inputIds->getSize();
std::vector<SizeType32> positionIdsVec(inputSize);
auto begin = std::begin(positionIdsVec);
for (SizeType32 i = 0; i < batchSize; ++i)
{
auto end = begin + (modelConfig.usePackedInput() ? contextLengthsHostPtr[i] : maxInputLength);
std::iota(begin, end, 0);
begin = end;
}
positionIds = manager.copyFrom(positionIdsVec, inputShape, MemoryType::kGPU);
}
else if (modelVariant == ModelConfig::ModelVariant::kGlm)
{
auto const positionIdsVec = getPositionIdsContextPhaseGlm(batchSize, maxInputLength, contextLengthsHostPtr,
modelConfig.useGptAttentionPlugin(), modelConfig.usePackedInput());
if (modelConfig.usePackedInput())
{
int num_tokens = (int) positionIdsVec.size() / 2;
auto const positionIdsShape = ITensor::makeShape({2, num_tokens});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
else
{
auto const positionIdsShape = ITensor::makeShape({batchSize, 2, maxInputLength});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
}
else
{
TLLM_THROW("Unsupported model variant");
}
for (SizeType32 i = 0; i < batchSize; ++i)
{
pastKeyValueLengthsPtr[i] = contextLengthsHostPtr[i];
}
if (modelConfig.usePromptTuning())
{
std::vector<SizeType32> reqBeamWidths(batchSize, 1);
std::vector<SizeType32> reqPromptLengths;
for (SizeType32 i = 0; i < batchSize; ++i)
{
reqPromptLengths.push_back(contextLengthsHostPtr[i]);
}
// Copy the generationInput tasks to host
promptTuningTasksHost = manager.copyFrom(*promptTuningParams.tasks, MemoryType::kPINNED);
// Update the tasks tensor
promptTuningParams.fillTasksTensor(promptTuningTasksHost, batchSize, batchSize, reqBeamWidths,
reqPromptLengths, manager, modelConfig.usePackedInput());
}
}
else
{
attentionMask = manager.copyFrom(*inputIds, MemoryType::kGPU);
kernels::invokeBuildAttentionMask(*attentionMask, padId, stream);
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskData = reinterpret_cast<SizeType32 const*>(attentionMaskHost->data());
std::vector<SizeType32> positionIdsVec(attentionMask->getSize());
for (SizeType32 i = 0; i < batchSize; ++i)
{
tc::stl_utils::exclusiveScan(attentionMaskData + i * maxInputLength,
attentionMaskData + (i + 1) * maxInputLength, std::begin(positionIdsVec) + i * maxInputLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskData[i] == 0)
positionIdsVec[i] = 1;
positionIds = manager.copyFrom(positionIdsVec, attentionMask->getShape(), MemoryType::kGPU);
}
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[hiddenStates->getShape().nbDims - 1];
auto const hiddenStatesShape = modelConfig.usePackedInput()
? ITensor::makeShape({inputShape.d[0], hiddenSize})
: ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto constexpr contextBeamWidth = 1;
kvCacheManager->getBlockOffsetsOfBatch(
*kvCacheBlockOffsetsHost, firstBatchSlotIdx, batchSize, contextBeamWidth);
manager.copy(*kvCacheBlockOffsetsHost, *kvCacheBlockOffsetsDevice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
static std::vector<SizeType32> getPositionIdsGenerationPhaseGlm(SizeType32 const& batchSize, SizeType32 const& beamSize,
SizeType32 const& step, SizeType32 const* pInputLengths, bool useGptAttentionPlugin, bool usePackedInput)
{
TLLM_CHECK(pInputLengths != nullptr);
auto const size = 2 * batchSize * beamSize;
std::vector<SizeType32> positionIdsVec(size, 0);
if (useGptAttentionPlugin)
{
// Share the same layout regardless of usePackedInput or not
for (SizeType32 b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + b * beamSize * 2;
auto const length = pInputLengths[b * beamSize];
for (SizeType32 bm = 0; bm < beamSize; ++bm)
{
pIdB[bm * 2 + 0] = length - 2;
pIdB[bm * 2 + 1] = step + 2;
}
}
}
else
{
TLLM_THROW("Unsupported model without GPT Attention Plugin");
}
return positionIdsVec;
}
void TransformerBuffers::copyAttentionMasks(
RuntimeBuffers* runtimeBuffers, std::vector<RuntimeBuffers> const& contextBatches, BufferManager& manager)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& generationConfig = runtimeBuffers->generationConfig;
auto const batchSize = generationConfig.batchSize;
auto const maxInputLength = generationConfig.maxInputLength;
// TODO(rkobus) include tiling
attentionMask = manager.gpu(ITensor::makeShape({batchSize, maxInputLength}), nvinfer1::DataType::kINT32);
auto const numContextBatches = static_cast<SizeType32>(contextBatches.size());
auto offset = 0;
for (auto contextBatchId = 0; contextBatchId < numContextBatches; ++contextBatchId)
{
auto& buffers = contextBatches.at(contextBatchId);
auto contextBatchSize = buffers.generationConfig.batchSize;
auto attentionMaskSlice = ITensor::slice(attentionMask, offset, contextBatchSize);
manager.copy(*buffers.transformerBuffers->attentionMask, *attentionMaskSlice);
offset += contextBatchSize;
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::tile(RuntimeBuffers* runtimeBuffers, BufferManager& manager, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& generationConfig = runtimeBuffers->generationConfig;
auto& logits = runtimeBuffers->logits;
auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice;
auto& contextLengthsHost = runtimeBuffers->contextLengthsHost;
auto const beamWidth = generationConfig.beamWidth;
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Tiling is only necessary for beam search.");
// Note: If computeContextLogits is true, the copy/expansion is performed in gatherLastTokenLogits.
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
// logits needs beamWidth in second dimension
auto logitsShape = logits->getShape();
logitsShape.d[1] *= beamWidth;
utils::tileBufferReplace(logits, beamWidth, manager);
logits->reshape(logitsShape);
}
utils::tileBufferReplace(contextLengthsDevice, beamWidth, manager);
if (modelConfig.useGptAttentionPlugin())
{
utils::tileCpuBufferReplace(contextLengthsHost, beamWidth);
utils::tileCpuBufferReplace(pastKeyValueLengths, beamWidth);
}
else
{
utils::tileBufferReplace(attentionMask, beamWidth, manager);
}
if (!modelConfig.usePagedKvCache())
{
for (auto& buffer : presentKeysVals)
utils::tileBufferReplace(buffer, beamWidth, manager);
for (auto& buffer : presentKeysValsAlt)
utils::tileBufferReplace(buffer, beamWidth, manager);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::postContextStep(RuntimeBuffers* runtimeBuffers,
std::vector<RuntimeBuffers> const& contextBuffers, BufferManager& manager, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& generationConfig = runtimeBuffers->generationConfig;
auto& requestTypes = runtimeBuffers->requestTypes;
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
if (modelConfig.useGptAttentionPlugin())
{
requestTypes->reshape(ITensor::makeShape({batchSize * beamWidth}));
auto hostRequestTypes = bufferCast<int32_t>(*requestTypes);
std::fill_n(hostRequestTypes, requestTypes->getSize(), 1);
}
else
{
copyAttentionMasks(runtimeBuffers, contextBuffers, manager);
}
// TODO(rkobus) handle this more gracefully
positionIds = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
if (modelConfig.computeContextLogits())
{
runtimeBuffers->gatherLastTokenLogits(manager, modelConfig, worldConfig);
}
if (beamWidth > 1)
{
tile(runtimeBuffers, manager, modelConfig, worldConfig);
}
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto cacheBlockOffsetsShape = kvCacheBlockOffsetsHost->getShape();
cacheBlockOffsetsShape.d[0] = batchSize * beamWidth;
kvCacheBlockOffsetsHost->reshape(cacheBlockOffsetsShape);
kvCacheBlockOffsetsDevice->reshape(cacheBlockOffsetsShape);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::prepareNextStep(RuntimeBuffers* runtimeBuffers, SizeType32 const step, BufferManager& manager,
KvCacheManager* kvCacheManager, SizeType32 firstBatchSlotIdx, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto& contextLengthsHost = runtimeBuffers->contextLengthsHost;
auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice;
auto& hiddenStates = runtimeBuffers->hiddenStates;
auto& generationConfig = runtimeBuffers->generationConfig;
auto& stream = manager.getStream();
SizeType32 const batchSize = generationConfig.batchSize;
SizeType32 const beamWidth = generationConfig.beamWidth;
auto const inputShape = [&modelConfig, batchSize, beamWidth]()
{
if (modelConfig.usePackedInput())
{
// batch in last dim
return ITensor::makeShape({batchSize * beamWidth});
}
else
{
// batch in first dim
return ITensor::makeShape({batchSize * beamWidth, 1});
}
}();
if (modelConfig.useGptAttentionPlugin())
{
auto const contextLengthsHostPtr = bufferCast<SizeType32 const>(*contextLengthsHost);
auto const pastKeyValueLengthsPtr = bufferCast<SizeType32>(*pastKeyValueLengths);
auto const tensorBatchSize = static_cast<SizeType32>(pastKeyValueLengths->getSize());
SizeType32 const srcStride{modelConfig.useGptAttentionPlugin() ? 1 : beamWidth};
TLLM_CHECK(static_cast<std::size_t>(tensorBatchSize * srcStride) == contextLengthsDevice->getSize());
for (SizeType32 i = 0; i < tensorBatchSize; ++i)
{
pastKeyValueLengthsPtr[i] = contextLengthsHostPtr[i * srcStride] + step;
}
auto const modelVariant = modelConfig.getModelVariant();
if (modelVariant == ModelConfig::ModelVariant::kGpt
|| modelVariant == ModelConfig::ModelVariant::kRecurrentGemma)
{
positionIds->reshape(inputShape);
manager.copy(*contextLengthsDevice, *positionIds);
kernels::invokeAdd(*positionIds, step, stream);
}
else if (modelVariant == ModelConfig::ModelVariant::kGlm)
{
auto const positionIdsVec = getPositionIdsGenerationPhaseGlm(batchSize, beamWidth, step,
contextLengthsHostPtr, modelConfig.useGptAttentionPlugin(), modelConfig.usePackedInput());
if (modelConfig.usePackedInput())
{
auto const positionIdsShape = ITensor::makeShape({2, batchSize * beamWidth});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
else
{
auto const positionIdsShape = ITensor::makeShape({batchSize * beamWidth, 2, 1});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
}
else
{
TLLM_THROW("Unsupported model variant");
}
}
else
{
auto const& shape = attentionMask->getShape();
auto const nbInputs = shape.d[0];
auto const oldLength = shape.d[1];
auto const newLength = oldLength + 1;
auto const newShape = ITensor::makeShape({nbInputs, newLength});
TensorPtr newAttentionMask = manager.gpu(newShape, attentionMask->getDataType());
kernels::invokeExtendAttentionMask(*newAttentionMask, *attentionMask, stream);
attentionMask = newAttentionMask;
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskPtr = bufferCast<SizeType32>(*attentionMaskHost);
// TODO old positionIds could be recovered to avoid scan
std::vector<SizeType32> positionIdsVec(attentionMask->getSize());
for (SizeType32 i = 0; i < nbInputs; ++i)
{
tc::stl_utils::exclusiveScan(attentionMaskPtr + i * newLength, attentionMaskPtr + (i + 1) * newLength,
std::begin(positionIdsVec) + i * newLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskPtr[i] == 0)
positionIdsVec[i] = 1;
std::vector<SizeType32> positionIdsEndVec(nbInputs);
for (SizeType32 i = 0; i < nbInputs; ++i)
positionIdsEndVec[i] = positionIdsVec[(i + 1) * newLength - 1];
positionIds = manager.copyFrom(positionIdsEndVec, ITensor::makeShape({nbInputs, 1}), MemoryType::kGPU);
}
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[hiddenStates->getShape().nbDims - 1];
auto const hiddenStatesShape = modelConfig.usePackedInput()
? ITensor::makeShape({inputShape.d[0], hiddenSize})
: ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
if (modelConfig.usePagedKvCache())
{
for (auto batchIdx = firstBatchSlotIdx; batchIdx < firstBatchSlotIdx + batchSize; ++batchIdx)
{
kvCacheManager->addToken(batchIdx);
}
kvCacheManager->getBlockOffsetsOfBatch(*kvCacheBlockOffsetsHost, firstBatchSlotIdx, batchSize, beamWidth);
manager.copy(*kvCacheBlockOffsetsHost, *kvCacheBlockOffsetsDevice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void TransformerBuffers::getRuntimeBuffers(RuntimeBuffers const* runtimeBuffers, TensorMap& inputBuffers,
TensorMap& outputBuffers, SizeType32 const step, TensorPtr const& inputIds, ModelConfig const& modelConfig,
WorldConfig const& worldConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
inputBuffers.clear();
outputBuffers.clear();
auto& logits = runtimeBuffers->logits;
auto& hiddenStates = runtimeBuffers->hiddenStates;
auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice;
auto& contextLengthsHost = runtimeBuffers->contextLengthsHost;
auto& lastTokenIds = runtimeBuffers->lastTokenIds;
auto& requestTypes = runtimeBuffers->requestTypes;
if (worldConfig.isLastPipelineParallelRank())
{
// feed a view to TensorRT runtime so reshaping does not change logits buffer
outputBuffers.insert_or_assign("logits", ITensor::view(logits));
}
else
{
outputBuffers.insert_or_assign("hidden_states_output", hiddenStates);
}
if (worldConfig.isFirstPipelineParallelRank())
{
inputBuffers.insert_or_assign("input_ids", inputIds);
}
else
{
inputBuffers.insert_or_assign("hidden_states_input", hiddenStates);
}
inputBuffers.insert_or_assign("context_lengths", contextLengthsDevice);
if (!modelConfig.computeContextLogits())
{
inputBuffers.insert_or_assign("last_token_ids", lastTokenIds);
}
inputBuffers.insert_or_assign("position_ids", positionIds);
auto const localNbLayers = modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism());
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
auto const& layerTypes = modelConfig.getLayerTypes();
if (modelConfig.useGptAttentionPlugin())
{
inputBuffers.insert_or_assign("cache_indirection", runtimeBuffers->cacheIndirectionDecoderOutput);
inputBuffers.insert_or_assign("host_past_key_value_lengths", pastKeyValueLengths);
inputBuffers.insert_or_assign("host_request_types", requestTypes);
inputBuffers.insert_or_assign("sequence_length", runtimeBuffers->sequenceLengths);
inputBuffers.insert_or_assign("host_sink_token_length", sinkTokenLengths);
inputBuffers.insert_or_assign("host_max_attention_window_sizes", maxAttentionWindows);
if (modelConfig.usePackedInput())
{
inputBuffers.insert_or_assign("host_context_lengths", contextLengthsHost);
}
if (modelConfig.usePagedKvCache())
{
inputBuffers.insert_or_assign("kv_cache_block_offsets", kvCacheBlockOffsetsDevice);
inputBuffers.insert_or_assign("host_kv_cache_block_offsets", kvCacheBlockOffsetsHost);
inputBuffers.insert_or_assign("host_kv_cache_pool_pointers", kvCacheBlockPoolPointers);
}
else
{
utils::insertTensorVector(inputBuffers, "past_key_value_", presentKeysVals, firstLayerId, layerTypes,
ModelConfig::LayerType::kATTENTION);
utils::insertTensorVector(outputBuffers, "present_key_value_", presentKeysVals, firstLayerId, layerTypes,
ModelConfig::LayerType::kATTENTION);
}
}
else
{
inputBuffers.insert_or_assign("attention_mask", attentionMask);
inputBuffers.insert_or_assign("cache_indirection", runtimeBuffers->cacheIndirectionDecoderOutput);
nvinfer1::Dims kvCacheShape{0};
if (step == 0)
{
kvCacheShape = presentKeysValsAlt.at(0)->getShape();
kvCacheShape.d[3] = 0;
}
char* disableReuseChar = std::getenv("TRTLLM_DISABLE_OOTB_KVCACHE_REUSE");
bool reuse = (disableReuseChar == nullptr || std::string(disableReuseChar) != "ON");
// TODO: fix for recurrentgemma
for (int32_t idx = 0; idx < localNbLayers; ++idx)
{
TensorPtr input;
TensorPtr output;
if (reuse)
{
// We will make current layer's output KV-cache overwrite previous layers input KV-cache
// buffer id: ... 5, 6, 7, 8, 9, ...
// layer n: out in
// layer n+1: out in
// layer n+2 out in
// And when finish a step, we will make every layer's in/out buffer index subtract 1 in
// a circular buffer way to make sure current outputs become next step's inputs.
int32_t input_ind = idx - (step % (localNbLayers + 1)); // Subtract 1 for every step.
if (input_ind < 0)
{
// When underflow, go to the back to achieve a circular buffers.
input_ind = localNbLayers + 1 + input_ind;
}
// Output buffer is just before input buffer. When input is buffer 0,
// output should use the back buffer to achieve circular buffers.
int32_t output_ind = input_ind > 0 ? input_ind - 1 : localNbLayers;
// We only allocate localNbLayers of normal buffers. If index is overflow, use the extra buffer.
input = input_ind < localNbLayers ? presentKeysVals[input_ind] : presentKeysValsAlt[0];
output = output_ind < localNbLayers ? presentKeysVals[output_ind] : presentKeysValsAlt[0];
}
else
{
input = step % 2 ? presentKeysVals[idx] : presentKeysValsAlt[idx];
output = step % 2 ? presentKeysValsAlt[idx] : presentKeysVals[idx];
}
if (step == 0)
{
TensorPtr tmp = ITensor::view(input, kvCacheShape);
inputBuffers.insert_or_assign("past_key_value_" + std::to_string(firstLayerId + idx), std::move(tmp));
}
else
{
inputBuffers.insert_or_assign("past_key_value_" + std::to_string(firstLayerId + idx), input);
}
outputBuffers.insert_or_assign("present_key_value_" + std::to_string(firstLayerId + idx), output);
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}