TensorRT-LLMs/cpp/tensorrt_llm/kernels/mlaKernels.h
zhhuang-nv a891013e3c
[feat] Optimize KV Cache Reuse for MLA (#4869)
Signed-off-by: Zhen Huang <145532724+zhhuang-nv@users.noreply.github.com>
2025-06-13 11:03:05 +08:00

116 lines
3.9 KiB
C++

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/kvCacheUtils.h"
#include "tensorrt_llm/kernels/unfusedAttentionKernels.h"
#include <assert.h>
#include <cstdint>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
namespace tensorrt_llm
{
namespace kernels
{
enum class KvCacheDataType;
struct MlaMetaParams
{
int32_t q_lora_rank = 0;
int32_t kv_lora_rank = 0;
int32_t qk_nope_head_dim = 0;
int32_t qk_rope_head_dim = 0;
int32_t v_head_dim = 0;
int32_t predicted_tokens_per_seq = 1;
int32_t num_layers = 0;
auto data() const
{
return std::make_tuple(q_lora_rank, kv_lora_rank, qk_nope_head_dim, qk_rope_head_dim, v_head_dim,
predicted_tokens_per_seq, num_layers);
}
};
template <typename T>
struct MlaParams
{
T const* latent_cache; // cKV + k_pe
T* attention_input_buf; // [b, s, 3, h, d_h + r]
void* quant_attention_input_buf;
T* context_buf;
T* q_pe; // [b, h, d_r], strided
float2 const* cos_sin_cache; // [s, rope]
int32_t batch_size;
int32_t acc_q_len;
int32_t head_num; // h
void* workspace;
int32_t const* cache_seq_lens;
int* seqQOffset;
uint32_t* fmha_tile_counter;
int32_t max_input_seq_len;
int* cu_q_seqlens;
int* cu_kv_seqlens;
int32_t q_pe_ld;
int32_t q_pe_stride;
MlaMetaParams meta;
int const* block_ids_per_seq;
KvCacheDataType cache_type;
// Scales for mla quantization
float* bmm1_scale;
float* bmm2_scale;
float const* quant_scale_o;
float const* quant_scale_q;
float const* quant_scale_kv;
float const* dequant_scale_q;
float const* dequant_scale_kv;
float host_bmm1_scale;
// for kv cache reuse/chunked context
void* context_paged_kv_ptr = nullptr;
void* context_kv_cache_block_offsets_ptr = nullptr;
int32_t context_paged_kv_max_blocks_per_seq = 0;
};
template <typename T, typename KVCacheBuffer>
void invokeMLARopeContext(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream);
template <typename T, typename KVCacheBuffer>
void invokeMLARopeGeneration(MlaParams<T>& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream);
template <typename T, typename TCache>
void invokeMLALoadPagedKV(T* compressed_kv_ptr, T* k_pe_ptr, KVBlockArray& kv_cache, int const num_contexts,
int64_t const* cu_ctx_cached_kv_lens, int const max_input_seq_len, int const lora_size, int const rope_size,
float const* kv_scale_quant_orig_ptr, cudaStream_t stream);
template <typename T>
void invokeMLASetPagedKV(T* output, T const* k_ptr, T const* v_ptr, T const* k_pe_ptr, int const num_requests,
int64_t const* cu_seq_lens, int const max_input_seq_len, int num_heads, int kv_dim, int rope_dim,
int kv_cache_tokens_per_block, int64_t kv_token_stride, cudaStream_t stream);
template <typename T, typename TCache>
void invokeMLARopeAppendPagedKVAssignQ(KVBlockArray& kv_cache, T* q_ptr, T const* latent_cache_ptr,
int const num_requests, int64_t const* cu_ctx_cached_kv_lens, int64_t const* cu_seq_lens,
int const max_input_uncached_seq_len, float2 const* cos_sin_cache, size_t head_num, int nope_size, int rope_size,
int lora_size, float const* kv_scale_orig_quant_ptr, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm