TensorRT-LLMs/cpp/tensorrt_llm/plugins/common/gemmPluginProfiler.h
Kaiyu Xie 2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00

333 lines
8.8 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "pluginUtils.h"
#include <cuda_runtime.h>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <mutex>
#include <optional>
#include <shared_mutex>
#include <sstream>
#include <unordered_map>
#include <vector>
namespace tensorrt_llm::plugins
{
struct GemmDims
{
using DimType64 = utils::DimType64;
DimType64 minM;
DimType64 maxM;
DimType64 n;
DimType64 k;
GemmDims()
: minM(-1)
, maxM(-1)
, n(-1)
, k(-1)
{
}
GemmDims(DimType64 minM_, DimType64 maxM_, DimType64 n_, DimType64 k_)
: minM(minM_)
, maxM(maxM_)
, n(n_)
, k(k_)
{
}
[[nodiscard]] bool isInitialized() const
{
return minM >= 0 && maxM >= 0 && n >= 0 && k >= 0;
}
};
// Unique ID of GEMM
// In our case GEMM is uniqly identified by N and K
class GemmIdCore
{
public:
int n;
int k;
nvinfer1::DataType dtype;
GemmIdCore(int n_, int k_, nvinfer1::DataType const& dtype_)
: n(n_)
, k(k_)
, dtype(dtype_)
{
}
GemmIdCore()
: n(-1)
, k(-1)
, dtype(nvinfer1::DataType::kFLOAT) // dtype does not matter here
{
}
bool operator==(GemmIdCore const& id) const
{
return isEqual(id);
}
friend std::ostream& operator<<(std::ostream& out, GemmIdCore const& id)
{
out << "(N;K)=(" << id.n << ";" << id.k << "),";
out << " type=" << static_cast<int>(id.dtype);
return out;
}
protected:
bool isEqual(GemmIdCore const& id) const
{
return n == id.n && k == id.k && dtype == id.dtype;
}
};
// Hash of GemmId
struct GemmIdCoreHash
{
std::size_t operator()(GemmIdCore const& id) const
{
auto h1 = std::hash<int>{}(id.n);
auto h2 = std::hash<int>{}(id.k);
auto h3 = std::hash<int>{}(static_cast<int>(id.dtype));
return h1 ^ h2 ^ h3;
}
};
class GemmIdCublas : public GemmIdCore
{
public:
bool transA{};
bool transB{};
nvinfer1::DataType outputDtype;
GemmIdCublas(int n_, int k_, nvinfer1::DataType const& dtype_, bool transA_, bool transB_,
nvinfer1::DataType const& output_dtype_)
: GemmIdCore(n_, k_, dtype_)
, transA(transA_)
, transB(transB_)
, outputDtype(output_dtype_)
{
}
GemmIdCublas() {}
bool operator==(GemmIdCublas const& id) const
{
return isEqual(id) && transA == id.transA && transB == id.transB && outputDtype == id.outputDtype;
}
friend std::ostream& operator<<(std::ostream& out, GemmIdCublas const& id)
{
out << "(N;K)=(" << id.n << ";" << id.k << "),";
out << " type=" << static_cast<int>(id.dtype);
out << " transA=" << id.transA;
out << " transB=" << id.transB;
out << " outputDtype=" << static_cast<int>(id.outputDtype);
return out;
}
};
// Hash of GemmIdCublas
struct GemmIdCublasHash
{
std::size_t operator()(GemmIdCublas const& id) const
{
auto h1 = std::hash<int>{}(id.n);
auto h2 = std::hash<int>{}(id.k);
auto h3 = std::hash<int>{}(static_cast<int>(id.dtype));
auto h4 = std::hash<bool>{}(id.transA);
auto h5 = std::hash<bool>{}(id.transB);
auto h6 = std::hash<bool>{}(static_cast<int>(id.outputDtype));
return h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6;
}
};
template <typename Config, typename RunnerPtr, typename GemmIdType, typename GemmIdHashType>
class GemmPluginProfiler
{
public:
// Map for single GEMM for different Ms (GEMM dimension) to the best config for particular M
using MProfileMap = std::unordered_map<int, std::optional<Config>>;
using MProfileMapPtr = std::shared_ptr<MProfileMap>;
// requires exclusive ownership to write to *this
using reader_lock = std::unique_lock<std::shared_timed_mutex>;
// requires shared ownership to read from other
using writer_lock = std::shared_lock<std::shared_timed_mutex>;
// Struct of continuing map if GEMMs to the best profiles for different Ms
struct MNKProfileMap
{
// Mutex guarding map
std::shared_timed_mutex mutex;
// Map from GEMM Id to profile for particular GEMM
std::unordered_map<GemmIdType, MProfileMapPtr, GemmIdHashType> profileMap;
bool existsMProfileMap(GemmIdType const& id)
{
auto const iter = profileMap.find(id);
return iter != profileMap.end();
}
void createMProfileMap(GemmIdType const& id)
{
profileMap[id] = std::make_shared<MProfileMap>();
}
MProfileMapPtr getMProfileMap(GemmIdType const& id)
{
auto const iter = profileMap.find(id);
if (iter == profileMap.end())
{
std::ostringstream msg;
msg << "Cannot find ID (" << id << ") in the profile map. Abort.";
TLLM_THROW(msg.str());
}
return iter->second;
}
};
using MNKProfileMapPtr = std::shared_ptr<MNKProfileMap>;
GemmPluginProfiler();
virtual ~GemmPluginProfiler() = default;
void serialize(char*& buffer, GemmIdType const& gemmId) const;
void deserialize(char const*& data, GemmDims& dims, GemmIdType const& gemmId);
size_t getSerializationSize(GemmIdType const& gemmId) const;
void profileTactics(RunnerPtr const& runner, nvinfer1::DataType const& type, GemmDims const& dims,
GemmIdType const& gemmId, bool hasWeightOnlyCudaKernel = false);
void setSelectionTactics(MNKProfileMapPtr const& map)
{
mMNKProfileMap = map;
}
void setTmpWorkspaceSizeInBytes(size_t bytes)
{
mTmpWorkspaceSizeInBytes = bytes;
}
void setSkip(bool skip)
{
mSkip = mSkip || skip;
}
std::optional<Config> getBestConfig(int m, GemmIdType const& gemmId) const;
virtual int getMaxProfileM() const;
protected:
virtual void runTactic(int m, int n, int k, Config const& tactic, char* workspace, cudaStream_t const& stream) = 0;
virtual void computeTmpSize(size_t maxM, size_t n, size_t k) = 0;
virtual bool checkTactic(int m, int n, int k, Config const& tactic) const
{
return true;
}
virtual std::vector<Config> getTactics(int m, int n, int k) const = 0;
virtual void initTmpData(int m, int n, int k, char* workspace, size_t size, cudaStream_t stream);
private:
void allocateTmpData();
void freeTmpData();
std::optional<Config> profileTacticsForProblem(int m, int n, int k, std::vector<Config> const& tactics);
float profileTacticForProblem(int m, int n, int k, Config const& tactic);
int nextPowerOfTwo(int v) const
{
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return ++v;
}
protected:
RunnerPtr mRunner{nullptr};
nvinfer1::DataType mType{};
private:
MNKProfileMapPtr mMNKProfileMap{};
size_t mTmpWorkspaceSizeInBytes{0};
char* mWorkspaceTmp{nullptr};
cudaStream_t mStream;
GemmDims mDims{};
bool mSkip{false};
};
template <typename GemmPluginProfilerType>
class GemmPluginProfilerManager
{
public:
using MNKProfileMap = typename GemmPluginProfilerType::MNKProfileMap;
using MNKProfileMapPtr = typename GemmPluginProfilerType::MNKProfileMapPtr;
using GemmPluginProfilerPtr = std::shared_ptr<GemmPluginProfilerType>;
GemmPluginProfilerManager()
{
mMNKProfileMap = std::make_shared<MNKProfileMap>();
}
GemmPluginProfilerPtr createGemmPluginProfiler(bool inference, bool skip = false)
{
auto profiler = std::make_shared<GemmPluginProfilerType>();
profiler->setSkip(skip);
// If the profiler is created during the engine build,
// mMNKProfileMap is shared between different profilers to minimize the time spent on the profiling
// and do not repeat profiling for the GEMMs of the same shape.
if (!inference)
{
profiler->setSelectionTactics(mMNKProfileMap);
}
return profiler;
}
private:
MNKProfileMapPtr mMNKProfileMap{};
};
} // namespace tensorrt_llm::plugins