TensorRT-LLMs/cpp/tests/resources/scripts/build_chatglm_engines.py
2024-09-03 12:14:23 +02:00

168 lines
5.8 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import platform
import shutil
import sys
import typing
from pathlib import Path
from build_engines_utils import init_model_spec_module, run_command, wincopy
init_model_spec_module()
import model_spec
import tensorrt_llm.bindings as _tb
resources_dir = Path(__file__).parent.resolve().parent
model_dir = resources_dir / "models"
chatglm_example_dir = Path("examples/chatglm")
bCopyModel = True # "False" to remove redundant copy of model from model_cache
def convert_ckpt(model_dir: str, output_dir: str, world_size: int):
convert_cmd = [
sys.executable,
str(chatglm_example_dir / "convert_checkpoint.py"), "--dtype=float16",
f"--model_dir={model_dir}", f"--output_dir={output_dir}",
f"--tp_size={world_size}"
]
run_command(convert_cmd)
def build_engine(ckpt_dir: str,
engine_dir: str,
is_ifb: bool = False,
is_chatglm_6b_or_glm_10b: bool = False):
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--log_level=error",
"--max_batch_size=8",
"--max_beam_width=2",
"--max_input_len=256",
"--max_seq_len=384",
"--gpt_attention_plugin=float16",
"--gemm_plugin=float16",
"--builder_opt=0",
]
if is_ifb:
build_cmd.extend([
"--remove_input_padding=enable",
"--paged_kv_cache=enable",
"--context_fmha=enable",
"--use_paged_context_fmha=enable",
])
else:
build_cmd.extend([
"--remove_input_padding=disable",
"--paged_kv_cache=disable",
])
if is_chatglm_6b_or_glm_10b:
print("Disable Context FMHA for ChatGLM-6B and GLM-10B")
build_cmd.extend(["--context_fmha=disable"])
run_command(build_cmd)
def build_engines(model_cache: typing.Optional[str] = None,
world_size: int = 1):
for model_name in ["chatglm-6b", "chatglm2-6b", "chatglm3-6b", "glm-10b"]:
is_chatglm_6b_or_glm_10b = model_name in ["chatglm-6b", "glm-10b"]
if model_cache and (Path(model_cache) / model_name).is_dir():
model_cache_dir = Path(model_cache) / model_name
if bCopyModel or model_name == "chatglm-6b":
print("Copy model from model_cache")
hf_dir = model_dir / model_name
if platform.system() == "Windows":
wincopy(source=str(model_cache_dir),
dest=model_name,
isdir=True,
cwd=model_dir)
else:
run_command(["rsync", "-rlptD",
str(model_cache_dir), "."],
cwd=model_dir)
else:
print("Use model from model_cache directly except ChatGLM-6B")
hf_dir = Path(model_cache)
else:
hf_dir = model_dir / model_name
if not hf_dir.is_dir():
print("Clone model from HF")
run_command(
[
"git", "clone",
f"https://huggingface.co/THUDM/{model_name}", model_name
],
cwd=model_dir,
)
# Build engines
print(f"Building {model_name}")
ckpt_dir = Path(model_dir) / "c-model" / model_name
ckpt_dir.mkdir(parents=True, exist_ok=True)
# Fix HF error in ChatGLM-6B, hope to remove this in the future
if model_name == "chatglm-6b":
shutil.copy(
chatglm_example_dir / "tokenization_chatglm.py",
hf_dir,
)
convert_ckpt(hf_dir, ckpt_dir, world_size)
model_spec_obj = model_spec.ModelSpec('input_tokens.npy',
_tb.DataType.HALF)
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.CONTINUOUS)
model_spec_obj.use_gpt_plugin()
engine_dir = Path(
model_dir
) / "rt_engine" / model_name / model_spec_obj.get_model_path(
) / "tp1-pp1-gpu"
engine_dir.mkdir(parents=True, exist_ok=True)
build_engine(ckpt_dir, engine_dir, False, is_chatglm_6b_or_glm_10b)
model_spec_obj.use_packed_input()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
engine_dir = Path(
model_dir
) / "rt_engine" / model_name / model_spec_obj.get_model_path(
) / "tp1-pp1-gpu"
engine_dir.mkdir(parents=True, exist_ok=True)
build_engine(ckpt_dir, engine_dir, True, is_chatglm_6b_or_glm_10b)
print("Done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
build_engines(**vars(parser.parse_args()))