mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-29 07:02:56 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
45 lines
1.6 KiB
Python
45 lines
1.6 KiB
Python
#! /usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
|
|
|
|
def combine_tables(input_tables: List[Path], output_table: Path):
|
|
tables = [np.load(table) for table in input_tables]
|
|
max_vocab_size = max(table.shape[1] for table in tables)
|
|
padded_tables = [
|
|
np.pad(table, [(0, 0), (0, max_vocab_size - table.shape[1]), (0, 0)])
|
|
for table in tables
|
|
]
|
|
merged_table = np.concatenate(padded_tables, axis=0)
|
|
np.save(output_table, merged_table)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("input_tables",
|
|
type=Path,
|
|
nargs="+",
|
|
help="paths to tables to merge.")
|
|
parser.add_argument("output_table",
|
|
type=Path,
|
|
help="path where to save the combined table")
|
|
args = parser.parse_args()
|
|
combine_tables(args.input_tables, args.output_table)
|