TensorRT-LLMs/examples/gpt/nemo_prompt_convert.py

146 lines
5.4 KiB
Python
Executable File

#! /usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import logging
import tempfile
from pathlib import Path
import numpy as np
import torch
import yaml
from tensorrt_llm._utils import torch_to_numpy
from tensorrt_llm.models.gpt.convert import cpu_map_location, unpack_nemo_ckpt
log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s"
logging.basicConfig(format=log_format)
LOGGER = logging.getLogger(__name__)
def prompt_convert(out_file, prompt_config, prompt_weights):
nemo_type = "peft_tuning" if "peft" in prompt_config else "prompt_learning"
vtokens_embeddings = []
vtokens_len = []
if nemo_type == "peft_tuning":
ptuning_key = "model.embedding.adapter_layer.ptuning_adapter.inference_table"
if ptuning_key not in prompt_weights:
key_match = "adapter_layer.ptuning_adapter"
for k in prompt_weights.keys():
if key_match in k:
ptuning_key = k
break
else:
raise ValueError(
"Could not find a suitable ptuning key in Nemo dict."
f" Tried {ptuning_key} or any key matching *{key_match}*")
prompt_task_weights = prompt_weights[ptuning_key]
if 'hidden_size' in prompt_config:
assert prompt_config['hidden_size'] == prompt_task_weights.shape[
1], "P-Tuning hidden size does not match the model's."
vtokens_embeddings.append(prompt_task_weights)
vtokens_len.append(prompt_task_weights.shape[0])
else:
prompt_templates = prompt_config["task_templates"]
actual_task_id = 0
for task_name_id, prompt_task in enumerate(prompt_templates):
prompt_task_name = prompt_task["taskname"]
LOGGER.info(f"Task {actual_task_id}: {prompt_task['taskname']}")
prompt_task_weights = prompt_weights["prompt_table"].get(
f"prompt_table.{prompt_task_name}.prompt_embeddings.weight")
if prompt_task_weights is None:
continue
vtokens_embeddings.append(prompt_task_weights)
vtokens_len.append(prompt_task_weights.shape[0])
actual_task_id += 1
max_vtoken_len = max(vtokens_len)
embedding_dim = vtokens_embeddings[0].shape[1]
# pad tasks to longest task embedding table
for i, vtoken_emb_table in enumerate(vtokens_embeddings):
padded_table = torch.zeros((max_vtoken_len, embedding_dim))
padded_table[:vtoken_emb_table.shape[0], :] = vtoken_emb_table
vtokens_embeddings[i] = padded_table
vtokens_embeddings = torch.stack(vtokens_embeddings)
np.save(out_file, torch_to_numpy(vtokens_embeddings))
def main(args):
start_time = datetime.datetime.now()
with tempfile.TemporaryDirectory() as prompt_out_dir:
prompt_out_dir = Path(prompt_out_dir)
unpack_nemo_ckpt(args.in_file, prompt_out_dir)
LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive",
datetime.datetime.now() - start_time)
model_weights_ckpt = "model_weights.ckpt"
with open(prompt_out_dir / "model_config.yaml") as f:
prompt_config = yaml.full_load(f)
LOGGER.debug(prompt_config)
start_time = datetime.datetime.now()
weight_path = prompt_out_dir / model_weights_ckpt
if not weight_path.exists():
weight_path = prompt_out_dir / "mp_rank_00" / model_weights_ckpt
prompt_weights = torch.load(
weight_path,
map_location=cpu_map_location,
)
prompt_convert(args.out_file, prompt_config, prompt_weights)
LOGGER.info("Spent %s (h:m:s) to convert the prompt model",
datetime.datetime.now() - start_time)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--out-file',
'-o',
type=Path,
help='path to output embedding table file in the .npy format',
required=True)
parser.add_argument('--in-file',
'-i',
type=Path,
help='path to input prompt-tuning checkpoint file',
required=True)
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
parser.add_argument("--verbose",
action="store_true",
help="Provide verbose messages")
args = parser.parse_args()
LOGGER.setLevel(logging.DEBUG if args.verbose else logging.INFO)
print("\n=============== Argument ===============")
for key in vars(args):
print(f"{key}: {vars(args)[key]}")
print("========================================")
main(args)