mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-26 05:32:57 +08:00
146 lines
5.4 KiB
Python
Executable File
146 lines
5.4 KiB
Python
Executable File
#! /usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import datetime
|
|
import logging
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
|
|
from tensorrt_llm._utils import torch_to_numpy
|
|
from tensorrt_llm.models.gpt.convert import cpu_map_location, unpack_nemo_ckpt
|
|
|
|
log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s"
|
|
logging.basicConfig(format=log_format)
|
|
LOGGER = logging.getLogger(__name__)
|
|
|
|
|
|
def prompt_convert(out_file, prompt_config, prompt_weights):
|
|
nemo_type = "peft_tuning" if "peft" in prompt_config else "prompt_learning"
|
|
|
|
vtokens_embeddings = []
|
|
vtokens_len = []
|
|
|
|
if nemo_type == "peft_tuning":
|
|
ptuning_key = "model.embedding.adapter_layer.ptuning_adapter.inference_table"
|
|
if ptuning_key not in prompt_weights:
|
|
key_match = "adapter_layer.ptuning_adapter"
|
|
for k in prompt_weights.keys():
|
|
if key_match in k:
|
|
ptuning_key = k
|
|
break
|
|
else:
|
|
raise ValueError(
|
|
"Could not find a suitable ptuning key in Nemo dict."
|
|
f" Tried {ptuning_key} or any key matching *{key_match}*")
|
|
prompt_task_weights = prompt_weights[ptuning_key]
|
|
|
|
if 'hidden_size' in prompt_config:
|
|
assert prompt_config['hidden_size'] == prompt_task_weights.shape[
|
|
1], "P-Tuning hidden size does not match the model's."
|
|
|
|
vtokens_embeddings.append(prompt_task_weights)
|
|
vtokens_len.append(prompt_task_weights.shape[0])
|
|
else:
|
|
prompt_templates = prompt_config["task_templates"]
|
|
actual_task_id = 0
|
|
for task_name_id, prompt_task in enumerate(prompt_templates):
|
|
prompt_task_name = prompt_task["taskname"]
|
|
LOGGER.info(f"Task {actual_task_id}: {prompt_task['taskname']}")
|
|
prompt_task_weights = prompt_weights["prompt_table"].get(
|
|
f"prompt_table.{prompt_task_name}.prompt_embeddings.weight")
|
|
if prompt_task_weights is None:
|
|
continue
|
|
vtokens_embeddings.append(prompt_task_weights)
|
|
vtokens_len.append(prompt_task_weights.shape[0])
|
|
actual_task_id += 1
|
|
|
|
max_vtoken_len = max(vtokens_len)
|
|
embedding_dim = vtokens_embeddings[0].shape[1]
|
|
|
|
# pad tasks to longest task embedding table
|
|
for i, vtoken_emb_table in enumerate(vtokens_embeddings):
|
|
padded_table = torch.zeros((max_vtoken_len, embedding_dim))
|
|
padded_table[:vtoken_emb_table.shape[0], :] = vtoken_emb_table
|
|
vtokens_embeddings[i] = padded_table
|
|
|
|
vtokens_embeddings = torch.stack(vtokens_embeddings)
|
|
np.save(out_file, torch_to_numpy(vtokens_embeddings))
|
|
|
|
|
|
def main(args):
|
|
start_time = datetime.datetime.now()
|
|
with tempfile.TemporaryDirectory() as prompt_out_dir:
|
|
prompt_out_dir = Path(prompt_out_dir)
|
|
unpack_nemo_ckpt(args.in_file, prompt_out_dir)
|
|
LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive",
|
|
datetime.datetime.now() - start_time)
|
|
|
|
model_weights_ckpt = "model_weights.ckpt"
|
|
with open(prompt_out_dir / "model_config.yaml") as f:
|
|
prompt_config = yaml.full_load(f)
|
|
LOGGER.debug(prompt_config)
|
|
|
|
start_time = datetime.datetime.now()
|
|
weight_path = prompt_out_dir / model_weights_ckpt
|
|
if not weight_path.exists():
|
|
weight_path = prompt_out_dir / "mp_rank_00" / model_weights_ckpt
|
|
|
|
prompt_weights = torch.load(
|
|
weight_path,
|
|
map_location=cpu_map_location,
|
|
)
|
|
prompt_convert(args.out_file, prompt_config, prompt_weights)
|
|
|
|
LOGGER.info("Spent %s (h:m:s) to convert the prompt model",
|
|
datetime.datetime.now() - start_time)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'--out-file',
|
|
'-o',
|
|
type=Path,
|
|
help='path to output embedding table file in the .npy format',
|
|
required=True)
|
|
parser.add_argument('--in-file',
|
|
'-i',
|
|
type=Path,
|
|
help='path to input prompt-tuning checkpoint file',
|
|
required=True)
|
|
parser.add_argument("--storage-type",
|
|
"-t",
|
|
type=str,
|
|
default="fp32",
|
|
choices=["fp32", "fp16"])
|
|
parser.add_argument("--verbose",
|
|
action="store_true",
|
|
help="Provide verbose messages")
|
|
args = parser.parse_args()
|
|
|
|
LOGGER.setLevel(logging.DEBUG if args.verbose else logging.INFO)
|
|
|
|
print("\n=============== Argument ===============")
|
|
for key in vars(args):
|
|
print(f"{key}: {vars(args)[key]}")
|
|
print("========================================")
|
|
|
|
main(args)
|