TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_llama_output.py
石晓伟 32ed92e449
Update TensorRT-LLM
Co-authored-by: Rong Zhou <130957722+ReginaZh@users.noreply.github.com>
Co-authored-by: Onur Galoglu <33498883+ogaloglu@users.noreply.github.com>
Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
2024-08-20 18:55:15 +08:00

110 lines
3.7 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
from pathlib import Path
import run
from build_engines_utils import init_model_spec_module
from mpi4py.MPI import COMM_WORLD
init_model_spec_module()
import os
import model_spec
import tensorrt_llm.bindings as _tb
def generate_output(engine: str,
num_beams: int,
model_spec_obj: model_spec.ModelSpec,
tp_size: int = 1,
pp_size: int = 1,
max_output_len: int = 8):
model = 'llama-7b-hf'
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
hf_dir = models_dir / model
tp_pp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-gpu/'
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir
data_dir = resources_dir / 'data'
input_file = data_dir / 'input_tokens.npy'
model_data_dir = data_dir / model
if num_beams <= 1:
output_dir = model_data_dir / 'sampling'
else:
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0]
args = run.parse_arguments([
'--engine_dir',
str(engine_dir), '--input_file',
str(input_file), '--tokenizer_dir',
str(hf_dir), '--output_npy',
str(output_dir / (base_output_name + '.npy')), '--output_csv',
str(output_dir / (base_output_name + '.csv')), '--max_output_len',
str(max_output_len), '--num_beams',
str(num_beams), '--use_py_session'
])
run.main(args)
def generate_outputs(num_beams, only_multi_gpu=False):
if not only_multi_gpu:
tp_pp_sizes = [(1, 1)]
elif COMM_WORLD.size == 4:
tp_pp_sizes = [(4, 1), (2, 2), (1, 4)]
elif COMM_WORLD.size == 2:
tp_pp_sizes = [(1, 2)]
else:
raise RuntimeError(
f"The world size of MPI {COMM_WORLD.size} is not equal to 1, 2, or 4."
)
model_spec_obj = model_spec.ModelSpec('input_tokens.npy', _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
for tp_size, pp_size in tp_pp_sizes:
print(
f'Generating outputs for Llama FP16 with TP={tp_size} and PP={pp_size}'
)
model_spec_obj.use_tensor_parallelism(tp_size)
model_spec_obj.use_pipeline_parallelism(pp_size)
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
tp_size=tp_size,
pp_size=pp_size,
model_spec_obj=model_spec_obj)
if __name__ == '__main__':
parser = _arg.ArgumentParser()
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Generate data with Pipeline and Tensor Parallelism")
args = parser.parse_args()
generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu)
generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu)
print("Done")