mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Co-authored-by: Rong Zhou <130957722+ReginaZh@users.noreply.github.com> Co-authored-by: Onur Galoglu <33498883+ogaloglu@users.noreply.github.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
1454 lines
63 KiB
Python
1454 lines
63 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.import functools
|
|
|
|
import copy
|
|
import functools
|
|
import json
|
|
import os
|
|
import time
|
|
from collections import defaultdict
|
|
from typing import List, Optional
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
import torch.nn as nn
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
from ..._utils import pad_vocab_size, str_dtype_to_torch
|
|
from ...logger import logger
|
|
from ...mapping import Mapping
|
|
from ...quantization import QuantAlgo
|
|
from ..convert_utils import load_calib_dataset
|
|
from .config import QWenConfig
|
|
from .utils import get_qwen_key_list, make_context
|
|
|
|
|
|
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
|
"""
|
|
This function has two purposes:
|
|
- compute quantized weights, scaled either per-tensor or per-column
|
|
- compute scaling factors
|
|
|
|
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
|
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
|
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
|
|
|
Here is the list of what we need (T means per-tensor, C per-column):
|
|
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
|
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
|
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
|
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
|
to quant range (int8) (used for CUBLAS) (T, C)
|
|
|
|
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
|
but then the model would change depending on the number of GPUs used.
|
|
|
|
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
|
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
|
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
|
"""
|
|
weights = weights.detach().cpu().numpy()
|
|
|
|
# compute weight scaling factors for fp->int8 and int8->fp
|
|
if is_qkv and not multi_query_mode:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
|
dim=-1, keepdims=True)[0].cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
|
-1).cpu().numpy()
|
|
elif is_qkv and multi_query_mode:
|
|
hidden_dim = weights.shape[0]
|
|
local_dim = act_range["w"].shape[0]
|
|
kv_dim = (local_dim - hidden_dim) // 2
|
|
scale_w_q = act_range["w"][0:hidden_dim]
|
|
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
|
scale_w_v = act_range["w"][-kv_dim:]
|
|
|
|
scale_w_qkv_t = torch.concat([
|
|
scale_w_q.max(dim=0, keepdim=True)[0],
|
|
scale_w_k.max(dim=0, keepdim=True)[0],
|
|
scale_w_v.max(dim=0, keepdim=True)[0]
|
|
])
|
|
|
|
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
else:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
|
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
|
|
|
scale_w_orig_quant_c = scale_w_orig_quant_c.astype(np.float32)
|
|
scale_w_orig_quant_t = scale_w_orig_quant_t.astype(np.float32)
|
|
|
|
# compute the rest of needed scaling factors
|
|
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
|
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
|
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
|
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_t)
|
|
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_c)
|
|
if is_qkv and not multi_query_mode:
|
|
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
|
scale_w_orig_quant_c.shape)
|
|
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
|
scale_w_orig_quant_c.shape)
|
|
if is_qkv and multi_query_mode:
|
|
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
|
scale_w_q.shape)
|
|
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
|
scale_w_k.shape)
|
|
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
|
scale_w_v.shape)
|
|
scale_y_accum_quant_t = np.concatenate(
|
|
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
|
scale_w_quant_orig_t = np.concatenate([
|
|
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
|
])
|
|
|
|
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
|
|
|
if is_qkv and multi_query_mode:
|
|
weight_int8 = to_i8(weights / scale_w_quant_orig_t)
|
|
else:
|
|
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
|
return {
|
|
"weight.int8": weight_int8,
|
|
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
|
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
|
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
|
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
|
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
|
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
|
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
def apply_smoothing(scales,
|
|
gemm_weights,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
dtype=torch.float32,
|
|
layernorm_1p=False):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
|
|
if layernorm_weights is not None:
|
|
assert layernorm_weights.numel() == scales.numel()
|
|
layernorm_weights.div_(scales).to(dtype)
|
|
if layernorm_bias is not None:
|
|
assert layernorm_bias.numel() == scales.numel()
|
|
layernorm_bias.div_(scales).to(dtype)
|
|
if layernorm_1p:
|
|
layernorm_weights += (1 / scales) - 1
|
|
|
|
for gemm in gemm_weights:
|
|
gemm.mul_(scales.view(1, -1)).to(dtype)
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm(gemm_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
|
|
orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm_fc1_gate(fc1_weights,
|
|
gate_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
gemm_weights = []
|
|
if not isinstance(fc1_weights, list):
|
|
fc1_weights = [fc1_weights]
|
|
if not isinstance(gate_weights, list):
|
|
gate_weights = [gate_weights]
|
|
|
|
for i in range(len(fc1_weights)):
|
|
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
|
|
gemm_weights.append(gemm_weight)
|
|
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
|
|
layernorm_bias, orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_qwen_model(model, scales, alpha, qwen_qkv_para, qwen_smoother):
|
|
# Smooth the activation and weights with smoother = $\diag{s}$
|
|
for name, module in model.named_modules():
|
|
if not module._get_name() == "QWenBlock":
|
|
continue
|
|
# qkv_proj
|
|
layer_name = name + ".attn.c_attn"
|
|
smoother = smooth_gemm(module.attn.c_attn.weight,
|
|
scales[layer_name]["x"], module.ln_1.weight,
|
|
None, alpha)
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.attn.c_attn.weight.abs().max(dim=1)[0]
|
|
|
|
# see transpose_weights function
|
|
qwen_qkv_para[layer_name] = module.attn.c_attn.weight.transpose(0, 1)
|
|
|
|
# =================================================================
|
|
layer_name = name + ".attn.c_proj"
|
|
smoother = smooth_gemm(
|
|
module.attn.c_proj.weight,
|
|
scales[layer_name]["x"],
|
|
None,
|
|
None,
|
|
alpha=alpha,
|
|
)
|
|
qwen_smoother[layer_name] = smoother.float()
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.attn.c_proj.weight.abs().max(dim=1)[0]
|
|
# ==================================================================
|
|
fc1_layer_name = name + ".mlp.w1"
|
|
gate_layer_name = name + ".mlp.w2"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.mlp.w1.weight,
|
|
module.mlp.w2.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.ln_2.weight, None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.mlp.w1.weight.abs().max(dim=1)[0]
|
|
|
|
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.mlp.w2.weight.abs().max(dim=1)[0]
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".mlp.c_proj"
|
|
smoother = smooth_gemm(module.mlp.c_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
qwen_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.mlp.c_proj.weight.abs().max(dim=1)[0]
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_qwen2_model(model, scales, alpha, qwen_qkv_para, qwen_smoother):
|
|
# Smooth the activation and weights with smoother = $\diag{s}$
|
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
|
for name, module in model.named_modules():
|
|
if not isinstance(module, Qwen2DecoderLayer):
|
|
continue
|
|
# qkv_proj
|
|
layer_name_q = name + ".self_attn.q_proj"
|
|
layer_name_k = name + ".self_attn.k_proj"
|
|
layer_name_v = name + ".self_attn.v_proj"
|
|
layer_name_qkv = name + ".self_attn.qkv_proj"
|
|
|
|
weight = torch.cat([
|
|
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
|
|
module.self_attn.v_proj.weight
|
|
],
|
|
dim=0)
|
|
|
|
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
|
|
module.input_layernorm.weight, None, alpha)
|
|
|
|
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
|
|
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
|
|
scales[layer_name_qkv]["y"] = torch.cat([
|
|
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
|
|
scales[layer_name_v]["y"]
|
|
],
|
|
dim=0)
|
|
|
|
# see transpose_weights function
|
|
qwen_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
|
|
|
|
# =================================================================
|
|
layer_name = name + ".self_attn.o_proj"
|
|
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
qwen_smoother[layer_name] = smoother.float()
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
fc1_layer_name = name + ".mlp.gate_proj"
|
|
gate_layer_name = name + ".mlp.up_proj"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
|
module.mlp.up_proj.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.post_attention_layernorm.weight,
|
|
None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".mlp.down_proj"
|
|
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
qwen_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
|
|
@torch.no_grad()
|
|
def capture_activation_range(model,
|
|
qwen_type,
|
|
tokenizer,
|
|
dataset,
|
|
system_prompt,
|
|
chat_format,
|
|
num_samples=512,
|
|
seq_len=512):
|
|
model.eval()
|
|
device = next(model.parameters()).device
|
|
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
|
|
|
if qwen_type == 'qwen':
|
|
tokenizer.pad_token_id = tokenizer.im_end_id
|
|
else:
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
def stat_tensor(name, tensor, act_scales, key):
|
|
hidden_dim = tensor.shape[-1]
|
|
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
|
comming_max = torch.max(tensor, dim=0)[0].float()
|
|
|
|
if act_scales[name][key] is None:
|
|
act_scales[name][key] = comming_max
|
|
else:
|
|
act_scales[name][key] = torch.max(act_scales[name][key],
|
|
comming_max)
|
|
|
|
def stat_input_hook(m, x, y, name):
|
|
if isinstance(x, tuple):
|
|
x = x[0]
|
|
stat_tensor(name, x, act_scales, "x")
|
|
stat_tensor(name, y, act_scales, "y")
|
|
|
|
if act_scales[name]["w"] is None:
|
|
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
|
None).max(dim=1)[0]
|
|
|
|
hooks = []
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
|
hooks.append(
|
|
m.register_forward_hook(
|
|
functools.partial(stat_input_hook, name=name)))
|
|
|
|
for i in tqdm(range(num_samples), desc="calibrating model"):
|
|
line = dataset[i]
|
|
line = line + ' TL;DR: '
|
|
line = line.strip()
|
|
line = line.replace(" n't", "n't")
|
|
if qwen_type == 'qwen':
|
|
_, input_id_list = make_context(tokenizer=tokenizer,
|
|
query=line,
|
|
history=[],
|
|
system=system_prompt,
|
|
chat_format=chat_format,
|
|
max_input_length=seq_len)
|
|
line_encoded = torch.from_numpy(
|
|
np.array(input_id_list,
|
|
dtype=np.int32)).type(torch.int32).unsqueeze(0)
|
|
line_encoded = line_encoded.to(device)
|
|
else:
|
|
line_encoded = tokenizer(line,
|
|
return_tensors="pt",
|
|
max_length=seq_len,
|
|
padding=True,
|
|
truncation=True).input_ids.to(device)
|
|
model(line_encoded)
|
|
for h in hooks:
|
|
h.remove()
|
|
return act_scales
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return torch.chunk(v, tp_size)[idx].contiguous()
|
|
else:
|
|
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
|
|
|
|
|
|
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
|
|
return split_v.contiguous()
|
|
|
|
|
|
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV bias according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
|
|
return split_v.contiguous()
|
|
|
|
|
|
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
|
return split(v, tensor_parallel, rank, dim=dim)
|
|
|
|
|
|
def get_weight(config, prefix, dtype):
|
|
if config[prefix + '.weight'].dtype != dtype:
|
|
config[prefix + '.weight'].data = config[prefix + '.weight'].to(dtype)
|
|
return config[prefix + '.weight'].detach()
|
|
|
|
|
|
def get_bias(config, prefix, dtype):
|
|
if config[prefix + '.bias'].dtype != dtype:
|
|
config[prefix + '.bias'].data = config[prefix + '.bias'].to(dtype)
|
|
return config[prefix + '.bias'].detach()
|
|
|
|
|
|
def get_weight_and_bias(config, prefix, dtype):
|
|
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(weight,
|
|
prefix,
|
|
bias=None,
|
|
use_weight_only=False,
|
|
plugin_weight_only_quant_type=torch.int8,
|
|
dtype='float32',
|
|
use_gemm_woq_plugin=True,
|
|
postfix='weight',
|
|
quant_scale_name=None):
|
|
results = {}
|
|
if use_weight_only:
|
|
if weight.dim() > 2:
|
|
v = weight.transpose(1, 2).contiguous().clone()
|
|
else:
|
|
v = weight.t().contiguous().clone()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.cpu(), plugin_weight_only_quant_type)
|
|
if not use_gemm_woq_plugin:
|
|
results[prefix + postfix] = v.to(dtype)
|
|
else:
|
|
results[prefix + postfix] = processed_torch_weights
|
|
if quant_scale_name is not None:
|
|
results[quant_scale_name] = torch_weight_scales
|
|
else:
|
|
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[prefix + postfix] = weight.clone()
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def dup_kv_weight(v, num_head, tp_size):
|
|
assert tp_size % num_head == 0
|
|
reps = tp_size // num_head
|
|
head_size = v.shape[0] // num_head
|
|
v = v.reshape(num_head, head_size,
|
|
-1)[:, None, :, :].expand(num_head, reps, head_size,
|
|
v.shape[1])
|
|
return v.reshape(num_head * reps * head_size, -1).clone().detach()
|
|
|
|
|
|
def get_tllm_linear_sq_weight(vals,
|
|
prefix,
|
|
shape,
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=False,
|
|
per_channel=False,
|
|
last_prefix=None,
|
|
bias=None,
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=0,
|
|
cat_dim=0,
|
|
multi_query_mode=False):
|
|
results = {}
|
|
|
|
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
|
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
|
|
q_split = np.split(q, tp_size, axis=-1)
|
|
k_split = np.split(k, tp_size, axis=-1)
|
|
v_split = np.split(v, tp_size, axis=-1)
|
|
return [
|
|
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
|
for ii in range(tp_size)
|
|
][cur_rank]
|
|
|
|
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
|
|
|
if per_token:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = torch.from_numpy(
|
|
cur_weights).t().clone().contiguous()
|
|
if smoother_value is None:
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([1.0], dtype=np.float32))
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_w_quant_orig.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_w_quant_orig"]
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array(cur_per_channel_value,
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
else:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = torch.from_numpy(
|
|
cur_weights).t().clone().contiguous()
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_y_accum_quant"]
|
|
# QKV is always per_channel
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array([cur_per_channel_value],
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([vals['scale_x_orig_quant']],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
results[prefix + 'act_scale'] = torch.from_numpy(
|
|
np.array([[vals["scale_y_quant_orig"]]],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
if smoother_value is not None:
|
|
cur_smoother_value = np.split(smoother_value,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
|
smoother_shape).contiguous().to(torch.float32)
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def load_hf_qwen(model_dir: str, load_model_on_cpu: bool = False):
|
|
from transformers import AutoModelForCausalLM
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_dir,
|
|
device_map='auto' if not load_model_on_cpu else 'cpu',
|
|
torch_dtype='auto',
|
|
trust_remote_code=True)
|
|
return model
|
|
|
|
|
|
def convert_hf_qwen(hf_model,
|
|
qwen_type,
|
|
mapping: Mapping,
|
|
vocab_size=32000,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
use_weight_only=False,
|
|
share_embedding_table=False,
|
|
use_gemm_woq_plugin=False,
|
|
plugin_weight_only_quant_type=torch.int8,
|
|
use_smooth_quant=False,
|
|
per_channel=False,
|
|
per_token=False,
|
|
int8_kv_cache=False,
|
|
act_range=[],
|
|
qkv_para=[],
|
|
smoother=[],
|
|
moe_config=None):
|
|
weights = {}
|
|
tik = time.time()
|
|
tensor_parallel = mapping.tp_size
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, dtype)
|
|
num_attention_heads = hf_model.config.num_attention_heads
|
|
hidden_size = hf_model.config.hidden_size
|
|
head_size = hidden_size // num_attention_heads
|
|
if qwen_type == 'qwen':
|
|
intermediate_size = hf_model.config.intermediate_size // 2 # Qwen version 1 has actual intermediate_size one half of what's in hf_config
|
|
else:
|
|
intermediate_size = hf_model.config.intermediate_size
|
|
num_key_value_heads = hf_model.config.num_key_value_heads if hasattr(
|
|
hf_model.config, "num_key_value_heads") else num_attention_heads
|
|
mha_mode = (num_key_value_heads == num_attention_heads)
|
|
layers_range = mapping.pp_layers(hf_model.config.num_hidden_layers)
|
|
|
|
layer_prefix = "transformer.h." if qwen_type == 'qwen' else "model.layers."
|
|
key_list = get_qwen_key_list(qwen_type)
|
|
|
|
for l in layers_range:
|
|
prefix = layer_prefix + f'{l}.'
|
|
tllm_prex = f'transformer.layers.{l - layers_range[0]}.'
|
|
if qwen_type == 'qwen':
|
|
qkv_weight, qkv_bias = get_weight_and_bias(model_params,
|
|
prefix + key_list[0],
|
|
dtype)
|
|
qkv_w = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
|
|
tensor_parallel, mapping.tp_rank)
|
|
qkv_b = split_qkv_bias_tp(qkv_bias, num_attention_heads,
|
|
hidden_size, tensor_parallel,
|
|
mapping.tp_rank)
|
|
else:
|
|
q_weight, q_bias = get_weight_and_bias(
|
|
model_params, prefix + key_list[0] + 'q_proj', dtype)
|
|
k_weight, k_bias = get_weight_and_bias(
|
|
model_params, prefix + key_list[0] + 'k_proj', dtype)
|
|
v_weight, v_bias = get_weight_and_bias(
|
|
model_params, prefix + key_list[0] + 'v_proj', dtype)
|
|
if not mha_mode:
|
|
if num_key_value_heads < tensor_parallel:
|
|
# duplicate the KV heads up to tensor_parallel
|
|
k_weight = dup_kv_weight(k_weight, num_key_value_heads,
|
|
tensor_parallel)
|
|
v_weight = dup_kv_weight(v_weight, num_key_value_heads,
|
|
tensor_parallel)
|
|
k_bias = dup_kv_weight(k_bias, num_key_value_heads,
|
|
tensor_parallel)
|
|
v_bias = dup_kv_weight(v_bias, num_key_value_heads,
|
|
tensor_parallel)
|
|
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
assert (k_bias.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
assert (v_bias.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
|
|
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
|
|
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
|
|
|
|
bq = split(q_bias, mapping.tp_size, mapping.tp_rank)
|
|
bk = split(k_bias, mapping.tp_size, mapping.tp_rank)
|
|
bv = split(v_bias, mapping.tp_size, mapping.tp_rank)
|
|
|
|
qkv_w = torch.concat((wq, wk, wv))
|
|
qkv_b = torch.concat((bq, bk, bv))
|
|
else:
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
qkv_bias = torch.cat([q_bias, k_bias, v_bias], dim=0)
|
|
|
|
qkv_w = split_qkv_tp(qkv_weight, num_attention_heads,
|
|
hidden_size, tensor_parallel,
|
|
mapping.tp_rank)
|
|
qkv_b = split_qkv_bias_tp(qkv_bias, num_attention_heads,
|
|
hidden_size, tensor_parallel,
|
|
mapping.tp_rank)
|
|
|
|
if use_smooth_quant:
|
|
qkv_proj_key = key_list[
|
|
0] if qwen_type == 'qwen' else 'self_attn.qkv_proj'
|
|
qkv_weight = qkv_para[prefix + qkv_proj_key]
|
|
qkv_out_dim = qkv_weight.shape[1]
|
|
|
|
if not mha_mode:
|
|
local_dim = qkv_weight.shape[0]
|
|
kv_hidden_size = (qkv_weight.shape[-1] - local_dim) // 2
|
|
qkv_weight = qkv_weight.reshape(local_dim,
|
|
local_dim + 2 * kv_hidden_size)
|
|
else:
|
|
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
|
|
|
int8_weights = generate_int8(qkv_weight,
|
|
act_range.get(prefix + qkv_proj_key),
|
|
is_qkv=True,
|
|
multi_query_mode=bool(not mha_mode))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(int8_weights,
|
|
tllm_prex + 'attention.qkv.',
|
|
[1, qkv_out_dim // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=True,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'input_layernorm.scale_to_int',
|
|
bias=qkv_b,
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1,
|
|
multi_query_mode=bool(not mha_mode)))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(qkv_w, tllm_prex + 'attention.qkv.',
|
|
qkv_b, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if int8_kv_cache:
|
|
if qwen_type == 'qwen':
|
|
qkv_y = act_range.get(prefix + key_list[0])["y"]
|
|
else:
|
|
qkv_y = torch.cat([
|
|
act_range.get(prefix + key_list[0] + 'q_proj')["y"],
|
|
act_range.get(prefix + key_list[0] + 'k_proj')["y"],
|
|
act_range.get(prefix + key_list[0] + 'v_proj')["y"]
|
|
],
|
|
dim=0)
|
|
|
|
int8_kv_scales = qkv_y.max() / 127.
|
|
|
|
kv_cache_weights = {}
|
|
|
|
kv_cache_weights[
|
|
tllm_prex +
|
|
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
|
|
[1])
|
|
|
|
weights.update(kv_cache_weights)
|
|
|
|
attn_dense_weight = get_weight(model_params, prefix + key_list[1],
|
|
dtype)
|
|
split_v = split_matrix_tp(attn_dense_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
if use_smooth_quant:
|
|
attn_dense_weight = attn_dense_weight.t()
|
|
int8_weights = generate_int8(attn_dense_weight,
|
|
act_range.get(prefix + key_list[1]))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'attention.dense.', [1, hidden_size],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'attention.quantization_scaling_factor',
|
|
smoother_value=smoother[(prefix + key_list[1])],
|
|
smoother_shape=[1, hidden_size // tensor_parallel],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if qwen_type == "qwen2_moe" and moe_config and moe_config.has_moe():
|
|
|
|
# shared_expert for qwen2_moe
|
|
shared_expert_up_proj = model_params[
|
|
f'model.layers.{l}.mlp.shared_expert.up_proj.weight']
|
|
shared_expert_down_proj = model_params[
|
|
f'model.layers.{l}.mlp.shared_expert.down_proj.weight']
|
|
shared_expert_gate = model_params[
|
|
f'model.layers.{l}.mlp.shared_expert.gate_proj.weight']
|
|
shared_expert_up_proj = split(shared_expert_up_proj,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
shared_expert_down_proj = split(shared_expert_down_proj,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
shared_expert_gate = split(shared_expert_gate,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
shared_expert_gate_up_proj = torch.concat(
|
|
[shared_expert_up_proj, shared_expert_gate], dim=-2).to(dtype)
|
|
|
|
## mlp.shared_expert.gate_up_proj.weight
|
|
weights.update(
|
|
get_tllm_linear_weight(shared_expert_gate_up_proj,
|
|
tllm_prex + 'shared_expert.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
## mlp.shared_expert.down_proj.weight
|
|
weights.update(
|
|
get_tllm_linear_weight(shared_expert_down_proj.to(dtype),
|
|
tllm_prex + 'shared_expert.proj.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
moe_shared_expert_gate_weights = get_weight(
|
|
model_params, prefix + 'mlp.shared_expert_gate', dtype)
|
|
weights.update(
|
|
get_tllm_linear_weight(
|
|
moe_shared_expert_gate_weights,
|
|
tllm_prex + 'shared_expert_gate.',
|
|
None,
|
|
False, # Router should never be quantized
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
## fine-grained experts
|
|
rank_experts = list(range(moe_config.num_experts))
|
|
if mapping.has_moe_ep():
|
|
rank_experts = mapping.ep_experts(moe_config.num_experts)
|
|
for suffix in ["gate_proj", "down_proj", "up_proj"]:
|
|
model_params[f'model.layers.{l}.mlp.experts.{suffix}.weight'] = \
|
|
torch.stack([model_params[f'model.layers.{l}.mlp.experts.{expert}.{suffix}.weight'].detach()
|
|
for expert in rank_experts])
|
|
w3 = model_params[f'model.layers.{l}.mlp.experts.up_proj.weight']
|
|
w2 = model_params[f'model.layers.{l}.mlp.experts.down_proj.weight']
|
|
w1 = model_params[f'model.layers.{l}.mlp.experts.gate_proj.weight']
|
|
if mapping.has_moe_tp():
|
|
w3 = split(w3, mapping.moe_tp_size, mapping.moe_tp_rank, dim=1)
|
|
w2 = split(w2, mapping.moe_tp_size, mapping.moe_tp_rank, dim=2)
|
|
w1 = split(w1, mapping.moe_tp_size, mapping.moe_tp_rank, dim=1)
|
|
|
|
moe_experts_w3w1_weights = torch.concat([w3, w1], dim=-2).to(dtype)
|
|
|
|
## mlp.experts.w2.weight
|
|
weights.update(
|
|
get_tllm_linear_weight(w2.to(dtype), tllm_prex + 'mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
## mlp.experts.w3w1.weight
|
|
weights.update(
|
|
get_tllm_linear_weight(moe_experts_w3w1_weights,
|
|
tllm_prex + 'mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
moe_experts_gate_weights = get_weight(model_params,
|
|
prefix + 'mlp.gate',
|
|
torch.float32)
|
|
weights.update(
|
|
get_tllm_linear_weight(
|
|
moe_experts_gate_weights,
|
|
tllm_prex + 'mlp.router.',
|
|
None,
|
|
False, # Router should never be quantized
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin))
|
|
else:
|
|
mlp_gate_weight = get_weight(model_params, prefix + key_list[2],
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_gate_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
if use_smooth_quant:
|
|
mlp_gate_weight = mlp_gate_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_gate_weight, act_range.get(prefix + key_list[2]))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.gate.',
|
|
[1, intermediate_size // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.gate.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_fc_weight = get_weight(model_params, prefix + key_list[3],
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_fc_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
|
|
if use_smooth_quant:
|
|
mlp_fc_weight = mlp_fc_weight.t() #verified
|
|
int8_weights = generate_int8(
|
|
mlp_fc_weight, act_range.get(prefix + key_list[3]))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.fc.',
|
|
[1, intermediate_size // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_proj_weight = get_weight(model_params, prefix + key_list[4],
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_proj_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
|
|
if use_smooth_quant:
|
|
mlp_proj_weight = mlp_proj_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_proj_weight, act_range.get(prefix + key_list[4]))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'mlp.quantization_scaling_factor',
|
|
smoother_value=smoother[prefix + key_list[4]],
|
|
smoother_shape=[
|
|
1, intermediate_size // tensor_parallel
|
|
],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
# Layer norms do not use tensor parallelism
|
|
input_ln_weight = get_weight(model_params, prefix + key_list[5], dtype)
|
|
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
|
|
|
post_ln_weight = get_weight(model_params, prefix + key_list[6], dtype)
|
|
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
|
|
|
v = get_weight(model_params, key_list[7], dtype)
|
|
|
|
if mapping.is_last_pp_rank():
|
|
if hf_model.config.tie_word_embeddings:
|
|
# lm_head.weight has the same weights as embedding
|
|
lm_head_weights = v.clone()
|
|
else:
|
|
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
|
|
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
|
|
lm_head_weights = torch.from_numpy(
|
|
np.pad(lm_head_weights.detach().cpu().numpy(),
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
|
|
if use_parallel_embedding:
|
|
v = split_matrix_tp(v,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=sharding_dim)
|
|
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = v
|
|
|
|
if mapping.is_last_pp_rank():
|
|
ln_f_w = get_weight(model_params, key_list[8], dtype)
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def smooth_quant(model,
|
|
qwen_type,
|
|
model_dir,
|
|
calib_dataset='cnn_dailymail',
|
|
smoothquant: Optional[float] = None):
|
|
assert model is not None
|
|
act_range = {}
|
|
qwen_qkv_para = {}
|
|
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
|
qwen_smoother = {}
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
|
|
"TOKENIZERS_PARALLELISM", "false")
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir,
|
|
trust_remote_code=True,
|
|
use_fast=False,
|
|
padding_side='left')
|
|
dataset = load_calib_dataset(calib_dataset)
|
|
system_prompt = "You are a useful assistant, please directly output the corresponding summary according to the article entered by the user."
|
|
gen_config_path = os.path.join(model_dir, 'generation_config.json')
|
|
with open(gen_config_path, 'r') as f:
|
|
gen_config = json.load(f)
|
|
chat_format = getattr(gen_config, 'chat_format', 'chatml')
|
|
act_range = capture_activation_range(model, qwen_type, tokenizer, dataset,
|
|
system_prompt, chat_format)
|
|
if smoothquant is not None:
|
|
if qwen_type == 'qwen':
|
|
smooth_qwen_model(model, act_range, smoothquant, qwen_qkv_para,
|
|
qwen_smoother)
|
|
else:
|
|
smooth_qwen2_model(model, act_range, smoothquant, qwen_qkv_para,
|
|
qwen_smoother)
|
|
return act_range, qwen_qkv_para, qwen_smoother
|
|
|
|
|
|
def quantize(hf_model_dir: str,
|
|
output_dir: str,
|
|
config: QWenConfig,
|
|
calib_dataset='cnn_dailymail'):
|
|
'''
|
|
Quantize the save the model as TRT-LLM checkpoint to output_dir
|
|
'''
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
config.to_json_file(os.path.join(output_dir, 'config.json'))
|
|
|
|
mapping = config.mapping
|
|
assert mapping.rank == 0, "quantize should be called at rank 0 only"
|
|
|
|
quant_config = config.quantization
|
|
use_smooth_quant = quant_config.use_plugin_sq
|
|
int8_kv_cache = quant_config.kv_cache_quant_algo == "INT8"
|
|
|
|
assert use_smooth_quant or int8_kv_cache, "Call from_hugging_face when there is no quantization"
|
|
if use_smooth_quant:
|
|
assert quant_config.smoothquant_val is not None, "A smooth value must be specified when using smooth quant"
|
|
|
|
assert hf_model_dir is not None
|
|
## only load and call smooth quant routine once for all ranks
|
|
hf_config = AutoConfig.from_pretrained(hf_model_dir, trust_remote_code=True)
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
device_map='auto',
|
|
torch_dtype='auto' if not use_smooth_quant else torch.float16,
|
|
trust_remote_code=True).half()
|
|
|
|
act_range, qkv_para, smoother = smooth_quant(hf_model, config.qwen_type,
|
|
hf_model_dir, calib_dataset,
|
|
quant_config.smoothquant_val)
|
|
|
|
for rank in range(mapping.world_size):
|
|
# To avoid changing the mapping arg in-place, also the given mapping from caller is rank agnostic, since quantize is called from only one rank
|
|
config = copy.deepcopy(config)
|
|
config.set_rank(rank)
|
|
weights = load_weights_from_hf_model(hf_model,
|
|
config=config,
|
|
act_range=act_range,
|
|
qkv_para=qkv_para,
|
|
smoother=smoother)
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
del weights
|
|
|
|
|
|
def load_weights_from_hf_model(hf_model,
|
|
config: QWenConfig,
|
|
act_range: Optional[dict] = None,
|
|
qkv_para: Optional[dict] = None,
|
|
smoother: Optional[dict] = None):
|
|
#TODO: simplify the parameters here
|
|
|
|
assert hf_model is not None
|
|
plugin_weight_only_quant_type = None # the value does not matter when use_weight_only is False
|
|
quant_algo = config.quantization.quant_algo
|
|
if quant_algo == QuantAlgo.W8A16:
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_algo == QuantAlgo.W4A16:
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
else:
|
|
plugin_weight_only_quant_type = None
|
|
use_gemm_woq_plugin = (not config.disable_weight_only_quant_plugin)
|
|
|
|
mapping = config.mapping
|
|
moe_config = config.moe
|
|
|
|
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
|
|
use_smooth_quant = config.quantization.use_plugin_sq
|
|
per_channel = use_smooth_quant and 'PER_CHANNEL' in quant_algo
|
|
per_token = use_smooth_quant and 'PER_TOKEN' in quant_algo
|
|
int8_kv_cache = config.quantization.kv_cache_quant_algo == QuantAlgo.INT8
|
|
qwen_type = config.qwen_type
|
|
weights = convert_hf_qwen(
|
|
hf_model,
|
|
qwen_type,
|
|
mapping,
|
|
vocab_size=config.vocab_size,
|
|
dtype=config.dtype,
|
|
use_weight_only=use_weight_only,
|
|
use_gemm_woq_plugin=use_gemm_woq_plugin,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
|
use_parallel_embedding=config.use_parallel_embedding,
|
|
sharding_dim=config.embedding_sharding_dim,
|
|
share_embedding_table=config.share_embedding_table,
|
|
use_smooth_quant=use_smooth_quant,
|
|
per_channel=per_channel,
|
|
per_token=per_token,
|
|
int8_kv_cache=int8_kv_cache,
|
|
act_range=act_range,
|
|
qkv_para=qkv_para,
|
|
smoother=smoother,
|
|
moe_config=moe_config)
|
|
return weights
|
|
|
|
|
|
def load_weights_from_hf_gptq_model(hf_model, config: QWenConfig):
|
|
logger.info("loading weights from groupwise GPTQ QWen safetensors...")
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
qwen_type = config.qwen_type
|
|
num_hidden_layers = config.num_hidden_layers
|
|
mapping = config.mapping
|
|
dtype = config.dtype
|
|
|
|
model_params = {k: v for k, v in hf_model.state_dict().items()}
|
|
torch.cuda.empty_cache()
|
|
valid_types = ('qwen', 'qwen2')
|
|
assert qwen_type in valid_types, f"Unsupported Qwen type: {qwen_type}, only {valid_types} are supported for GPTQ."
|
|
layer_prefix = "transformer.h." if qwen_type == 'qwen' else "model.layers."
|
|
key_list = get_qwen_key_list(qwen_type)
|
|
|
|
def torch_split(v, dim):
|
|
if v.shape[dim] % mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(mapping.tp_size))
|
|
assert False, "Invalid TP size"
|
|
return v.split(v.shape[dim] // mapping.tp_size,
|
|
dim=dim)[mapping.tp_rank]
|
|
|
|
def unpack_int32_into_int8(w_packed):
|
|
# unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
|
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
|
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
|
w_packed_int4x2.shape[1] * 2,
|
|
dtype=torch.int8)
|
|
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
|
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
|
return w_unpacked.contiguous()
|
|
|
|
def process_and_assign_weight(v: List[torch.Tensor],
|
|
tllm_prex: str,
|
|
tp_dim: int = -1):
|
|
if tp_dim == -1:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
item.cpu() for item in v
|
|
]
|
|
else:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
torch_split(item, tp_dim).cpu() for item in v
|
|
]
|
|
|
|
USE_UINT4_INPUT = 1 # Set to true if checkpoint store UINT4 weights
|
|
USE_GPTQ_FOR_QWEN = 1 # GPTQ-for-QWEN added 1 to zeros
|
|
|
|
qweight_unpacked_int8 = unpack_int32_into_int8(
|
|
qweight_int32.T).T.contiguous() - 8
|
|
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
|
torch.quint4x2,
|
|
torch.float16).view(torch.float16)
|
|
# zeros = zeros * scales
|
|
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
|
if not USE_UINT4_INPUT:
|
|
# Correcting UINT4 values back to INT4 order
|
|
mask_negative = qzeros_unpacked_int32[qzeros_unpacked_int32 < 0]
|
|
mask_positive = qzeros_unpacked_int32[qzeros_unpacked_int32 >= 0]
|
|
qzeros_unpacked_int32 = qzeros_unpacked_int32 + 16 * mask_negative - 16 * mask_positive
|
|
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * USE_UINT4_INPUT -
|
|
USE_GPTQ_FOR_QWEN) * scales_fp16
|
|
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
|
|
|
results = {
|
|
f'{tllm_prex}.weight': qweight_interleaved,
|
|
f'{tllm_prex}.weights_scaling_factor': scales_fp16,
|
|
f'{tllm_prex}.zero': zeros_x_scales_fp16,
|
|
}
|
|
return results
|
|
|
|
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
|
|
# Load weights from GPTQ checkpoint into TRT-LLM module
|
|
# 1. vocab_embedding
|
|
v = model_params[key_list[7] + '.weight']
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = v.to(torch_dtype)
|
|
|
|
# 2. ln_f
|
|
v = model_params[key_list[8] + '.weight']
|
|
if mapping.is_last_pp_rank():
|
|
weights['transformer.ln_f.weight'] = v.to(torch_dtype)
|
|
|
|
# 3. lm_head
|
|
v = model_params['lm_head.weight']
|
|
if mapping.is_last_pp_rank():
|
|
weights['lm_head.weight'] = torch_split(v, 0).to(torch_dtype)
|
|
|
|
# 4. Weights inside each layer
|
|
layers_per_pipeline_stage = num_hidden_layers // mapping.pp_size
|
|
layers_range = list(
|
|
range(mapping.pp_rank * layers_per_pipeline_stage,
|
|
(mapping.pp_rank + 1) * layers_per_pipeline_stage, 1))
|
|
suffixs = [".qweight", ".qzeros", ".scales"]
|
|
|
|
for l in tqdm(layers_range, desc="loading weight in each layer..."):
|
|
layer_idx = l - mapping.pp_rank * layers_per_pipeline_stage
|
|
prefix = layer_prefix + str(layer_idx) + "."
|
|
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
|
# 4.1 attention.qkv
|
|
qkv_weight_list = []
|
|
if qwen_type == 'qwen':
|
|
for suf in suffixs:
|
|
qkv_part = model_params[prefix + key_list[0] + suf]
|
|
q_emb = qkv_part.shape[1] // 3
|
|
model_emb = qkv_part.shape[0]
|
|
qkv_part = qkv_part.reshape(model_emb, 3, q_emb)
|
|
qkv_part = torch_split(qkv_part, 2)
|
|
qkv_part = qkv_part.reshape(model_emb,
|
|
3 * (q_emb // mapping.tp_size))
|
|
qkv_weight_list.append(qkv_part)
|
|
else:
|
|
for suf in suffixs:
|
|
qkv_list = []
|
|
for comp in ["q_proj", "k_proj", "v_proj"]:
|
|
comp_part = model_params[prefix + key_list[0] + comp + suf]
|
|
comp_part = torch_split(comp_part, 1)
|
|
qkv_list.append(comp_part)
|
|
qkv_weight_list.append(torch.cat(qkv_list, dim=1))
|
|
weights.update(
|
|
process_and_assign_weight(qkv_weight_list,
|
|
f'{tllm_prex}.attention.qkv'))
|
|
# 4.2 attention.bias
|
|
suf = ".bias"
|
|
if qwen_type == 'qwen':
|
|
qkv_bias = model_params[prefix + key_list[0] +
|
|
suf].to(torch_dtype).cpu().contiguous()
|
|
q_emb = qkv_bias.shape[0] // 3
|
|
qkv_bias = qkv_bias.reshape(3, q_emb)
|
|
split_v = split(qkv_bias, mapping.tp_size, mapping.rank, dim=1)
|
|
qkv_bias = split_v.reshape(3 * (q_emb // mapping.tp_size))
|
|
else:
|
|
qkv_bias_list = []
|
|
for comp in ["q_proj", "k_proj", "v_proj"]:
|
|
comp_part = model_params[prefix + key_list[0] + comp + suf].to(
|
|
torch_dtype).cpu().contiguous()
|
|
comp_part = torch_split(comp_part, dim=0)
|
|
qkv_bias_list.append(comp_part)
|
|
qkv_bias = torch.cat(qkv_bias_list, dim=0)
|
|
weights[tllm_prex + ".attention.qkv.bias"] = qkv_bias
|
|
# 4.3 attention.dense
|
|
qkv_dense_list = []
|
|
for suf in suffixs:
|
|
qkv_dense_part = model_params[prefix + key_list[1] + suf]
|
|
qkv_dense_list.append(qkv_dense_part)
|
|
weights.update(
|
|
process_and_assign_weight(qkv_dense_list,
|
|
f'{tllm_prex}.attention.dense',
|
|
tp_dim=0))
|
|
# 4.4 mlp.gate
|
|
mlp_gate_list = []
|
|
for suf in suffixs:
|
|
mlp_gate_part = model_params[prefix + key_list[2] + suf]
|
|
mlp_gate_list.append(mlp_gate_part)
|
|
weights.update(
|
|
process_and_assign_weight(mlp_gate_list,
|
|
f'{tllm_prex}.mlp.gate',
|
|
tp_dim=1))
|
|
# 4.5 mlp.fc
|
|
mlp_fc_list = []
|
|
for suf in suffixs:
|
|
mlp_fc_part = model_params[prefix + key_list[3] + suf]
|
|
mlp_fc_list.append(mlp_fc_part)
|
|
weights.update(
|
|
process_and_assign_weight(mlp_fc_list,
|
|
f'{tllm_prex}.mlp.fc',
|
|
tp_dim=1))
|
|
# 4.6 mlp.proj
|
|
mlp_proj_list = []
|
|
for suf in suffixs:
|
|
mlp_proj_part = model_params[prefix + key_list[4] + suf]
|
|
mlp_proj_list.append(mlp_proj_part)
|
|
weights.update(
|
|
process_and_assign_weight(mlp_proj_list,
|
|
f'{tllm_prex}.mlp.proj',
|
|
tp_dim=0))
|
|
# 4.7 input_layernorm
|
|
v = model_params[prefix + key_list[5] + '.weight']
|
|
weights[f'{tllm_prex}.input_layernorm.weight'] = v.to(torch_dtype)
|
|
# 4.8 post_layernorm
|
|
v = model_params[prefix + key_list[6] + '.weight']
|
|
weights[f'{tllm_prex}.post_layernorm.weight'] = v.to(torch_dtype)
|
|
|
|
tok = time.time()
|
|
t = time.strftime("%H:%M:%S", time.gmtime(tok - tik))
|
|
logger.info(f"weights loaded. total time: {t}")
|
|
|
|
return weights
|