TensorRT-LLMs/cpp/tensorrt_llm/layers/samplingLayer.cpp
tburt-nv 7a659885e3
chore: remove usernames from comments (#3291)
Signed-off-by: Tyler Burt <195370667+tburt-nv@users.noreply.github.com>
2025-04-05 13:44:28 +08:00

213 lines
8.2 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/nvtxUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include "samplingLayer.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::layers
{
template <typename T>
SamplingLayer<T>::SamplingLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
std::shared_ptr<BufferManager> bufferManager)
: BaseLayer(decoderDomain, bufferManager)
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(!mDecodingMode.isBeamSearch(), "SamplingLayer does not support Beam search mode");
TLLM_CHECK_WITH_INFO(mDecodingMode.isTopKorTopP(), "SamplingLayer requires TopK or TopP mode");
if (mDecodingMode.isTopK())
{
mSamplingLayers.emplace_back(std::make_unique<TopKSamplingLayer<T>>(decoderDomain, mBufferManager));
}
if (mDecodingMode.isTopP())
{
mSamplingLayers.emplace_back(
std::make_unique<TopPSamplingLayer<T>>(decoderDomain, mBufferManager, /* deterministic */ true));
}
allocateBuffer(decoderDomain.getBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::allocateBuffer(SizeType32 batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
size_t workspaceSize = 0;
for (auto&& layer : mSamplingLayers)
{
workspaceSize = std::max(workspaceSize, layer->getWorkspaceSize());
}
mWorkspaceSize = workspaceSize;
auto const batchSizeShape = ITensor::makeShape({batchSize});
mSetupWorkspaceSize = DecodingLayerWorkspace::calculateRequiredWorkspaceSize(
std::make_pair(batchSizeShape, TRTDataType<uint64_t>::value));
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
mCurandStatesDevice
= mBufferManager->gpu(ITensor::makeShape({batchSize, sizeof(curandState_t)}), TRTDataType<int8_t>::value);
// host buffers.
mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<bool>::value);
mRuntimeMinPHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType<float>::value);
mRuntimeMinPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
TLLM_CHECK(mSkipDecodeHost != nullptr);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
workspace->initializeDeviceCurandStates(
setupParams->randomSeed, batchSize, workspace->getDeviceBatchSlots(), mCurandStatesDevice);
if (setupParams->outputLogProbs)
{
// FIXME: monotonically growing
mOutputLogProbs = std::any_of(setupParams->outputLogProbs->begin(), setupParams->outputLogProbs->end(),
[this](bool outputLogProbs) { return this->mOutputLogProbs | outputLogProbs; });
}
if (setupParams->cumLogProbs)
{
// FIXME: monotonically growing
mCumLogProbs = std::any_of(setupParams->cumLogProbs->begin(), setupParams->cumLogProbs->end(),
[this](bool cumLogProbs) { return this->mCumLogProbs | cumLogProbs; });
}
for (auto&& layer : mSamplingLayers)
{
layer->setup(batchSize, beamWidth, batchSlots, setupParams, workspace);
}
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mBufferManager};
bool const useMinP = mDecodingMode.isUseMinP() && setupParams->runtimeMinP.has_value();
mUseMinP |= useMinP;
if (mUseMinP)
{
fillBuffers(setupParams->runtimeMinP, DefaultDecodingParams::getMinP(), mRuntimeMinPHost, mRuntimeMinPDevice,
batchSlots, std::pair<float, float>(-1e-6f, 1.0f), "min_p");
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void SamplingLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& outputs,
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
NVTX3_SCOPED_RANGE(SamplingLayer_forwardAsync);
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
auto const localDecoderDomain = getLocalDecoderDomain(inputs, mDecoderDomain);
auto const batchSize = inputs->logits.value()->getDimension<0>();
auto const* endIds = bufferCast<TokenIdType>(*inputs->endIds);
FinishedState const* finishedInput = (inputs->finished)
? reinterpret_cast<FinishedState const*>(bufferCast<FinishedState::UnderlyingType>(*inputs->finished.value()))
: nullptr;
auto const skipTopP = !mDecodingMode.isTopP();
auto const* batchSlotsHostPtr = bufferCast<SizeType32>(*inputs->batchSlots);
auto minPs = mUseMinP
&& !allOfBatchSlots(batchSlotsHostPtr, bufferCast<float>(*mRuntimeMinPHost),
localDecoderDomain.getBatchSize(), DefaultDecodingParams::getMinP())
? mRuntimeMinPDevice
: nullptr;
// Compute probabilities either for TopP or if cumLogProbs or outputLogProbs are specified
bool const skipSoftMax = skipTopP && !mOutputLogProbs && !mCumLogProbs && minPs == nullptr;
inputs->curandStates = reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*mCurandStatesDevice));
inputs->probsComputed = !skipSoftMax;
if (!skipSoftMax)
{
auto runtimeLogitsPtr = bufferCast<T>(*workspace->getDeviceRuntimeLogits());
auto logitsPtrsPtr = static_cast<T**>(nullptr);
auto biasPtr = static_cast<T*>(nullptr);
auto const* batchSlotsPtr = workspace->getDeviceBatchSlotsPtr();
BiasSoftmaxParams<T> biasSoftmaxParams;
biasSoftmaxParams.logits = runtimeLogitsPtr;
biasSoftmaxParams.logitsPtrs = logitsPtrsPtr;
biasSoftmaxParams.probs = runtimeLogitsPtr;
biasSoftmaxParams.bias = biasPtr;
biasSoftmaxParams.endIds = endIds;
biasSoftmaxParams.finished = finishedInput;
biasSoftmaxParams.batchSlots = batchSlotsPtr;
biasSoftmaxParams.batchSize = batchSize;
biasSoftmaxParams.maxBatchSize = mDecoderDomain.getBatchSize();
biasSoftmaxParams.maxBeamWidth = 1;
biasSoftmaxParams.vocabSize = mDecoderDomain.getVocabSize();
biasSoftmaxParams.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
biasSoftmaxParams.skipSoftMax = skipSoftMax;
biasSoftmaxParams.batchSlotsLogits = false;
biasSoftmaxParams.minPs = bufferCastOrNull<float>(minPs);
biasSoftmaxParams.checkParams();
invokeAddBiasSoftMax(biasSoftmaxParams, getStream());
sync_check_cuda_error(getStream());
}
for (auto&& layer : mSamplingLayers)
{
layer->forwardAsync(outputs, baseInputs, workspace);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t SamplingLayer<T>::getWorkspaceSize() const noexcept
{
return std::max(mWorkspaceSize, mSetupWorkspaceSize);
}
template class SamplingLayer<float>;
template class SamplingLayer<half>;
} // namespace tensorrt_llm::layers