TensorRT-LLMs/1.0.0/quick-start-guide.html
2025-09-24 02:05:54 +00:00

791 lines
46 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Quick Start Guide &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=5929fcd5"></script>
<script src="_static/doctools.js?v=9a2dae69"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/clipboard.min.js?v=a7894cd8"></script>
<script src="_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'quick-start-guide';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.0.0';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="_static/favicon.png"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Installation" href="installation/index.html" />
<link rel="prev" title="Overview" href="overview.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.0.0" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="index.html">
<img src="_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="index.html">
<img src="_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="overview.html">Overview</a></li>
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/disagg-serving.html">Disaggregated Serving (Beta)</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="architecture/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="developer-guide/api-change.html">LLM API Change Guide</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Quick Start Guide</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="quick-start-guide">
<span id="id1"></span><h1>Quick Start Guide<a class="headerlink" href="#quick-start-guide" title="Link to this heading">#</a></h1>
<p>This is the starting point to try out TensorRT LLM. Specifically, this Quick Start Guide enables you to quickly get set up and send HTTP requests using TensorRT LLM.</p>
<section id="launch-docker-on-a-node-with-nvidia-gpus-deployed">
<h2>Launch Docker on a node with NVIDIA GPUs deployed<a class="headerlink" href="#launch-docker-on-a-node-with-nvidia-gpus-deployed" title="Link to this heading">#</a></h2>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>docker<span class="w"> </span>run<span class="w"> </span>--rm<span class="w"> </span>-it<span class="w"> </span>--ipc<span class="w"> </span>host<span class="w"> </span>--gpus<span class="w"> </span>all<span class="w"> </span>--ulimit<span class="w"> </span><span class="nv">memlock</span><span class="o">=</span>-1<span class="w"> </span>--ulimit<span class="w"> </span><span class="nv">stack</span><span class="o">=</span><span class="m">67108864</span><span class="w"> </span>-p<span class="w"> </span><span class="m">8000</span>:8000<span class="w"> </span>nvcr.io/nvidia/tensorrt-llm/release:1.0.0
</pre></div>
</div>
</section>
<section id="deploy-online-serving-with-trtllm-serve">
<span id="deploy-with-trtllm-serve"></span><h2>Deploy online serving with trtllm-serve<a class="headerlink" href="#deploy-online-serving-with-trtllm-serve" title="Link to this heading">#</a></h2>
<p>You can use the <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code> command to start an OpenAI compatible server to interact with a model.
To start the server, you can run a command like the following example inside a Docker container:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>trtllm-serve<span class="w"> </span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>If you are running trtllm-server inside a Docker container, you have two options for sending API requests:</p>
<ol class="arabic simple">
<li><p>Expose a port (e.g., 8000) to allow external access to the server from outside the container.</p></li>
<li><p>Open a new terminal and use the following command to directly attach to the running container:</p></li>
</ol>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>docker<span class="w"> </span><span class="nb">exec</span><span class="w"> </span>-it<span class="w"> </span>&lt;container_id&gt;<span class="w"> </span>bash
</pre></div>
</div>
</div>
<p>After the server has started, you can access well-known OpenAI endpoints such as <code class="docutils literal notranslate"><span class="pre">v1/chat/completions</span></code>.
Inference can then be performed using examples similar to the one provided below, from a separate terminal.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>curl<span class="w"> </span>-X<span class="w"> </span>POST<span class="w"> </span>http://localhost:8000/v1/chat/completions<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-H<span class="w"> </span><span class="s2">&quot;Content-Type: application/json&quot;</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-H<span class="w"> </span><span class="s2">&quot;Accept: application/json&quot;</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-d<span class="w"> </span><span class="s1">&#39;{</span>
<span class="s1"> &quot;model&quot;: &quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;,</span>
<span class="s1"> &quot;messages&quot;:[{&quot;role&quot;: &quot;system&quot;, &quot;content&quot;: &quot;You are a helpful assistant.&quot;},</span>
<span class="s1"> {&quot;role&quot;: &quot;user&quot;, &quot;content&quot;: &quot;Where is New York? Tell me in a single sentence.&quot;}],</span>
<span class="s1"> &quot;max_tokens&quot;: 32,</span>
<span class="s1"> &quot;temperature&quot;: 0</span>
<span class="s1"> }&#39;</span>
</pre></div>
</div>
<p><em>Example Output</em></p>
<div class="highlight-json notranslate"><div class="highlight"><pre><span></span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;id&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;chatcmpl-ef648e7489c040679d87ed12db5d3214&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;object&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;chat.completion&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;created&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">1741966075</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;model&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;choices&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;index&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;message&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;role&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;assistant&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;content&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;New York is a city in the northeastern United States, located on the eastern coast of the state of New York.&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;tool_calls&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[]</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">&quot;logprobs&quot;</span><span class="p">:</span><span class="w"> </span><span class="kc">null</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;finish_reason&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;stop&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;stop_reason&quot;</span><span class="p">:</span><span class="w"> </span><span class="kc">null</span>
<span class="w"> </span><span class="p">}</span>
<span class="w"> </span><span class="p">],</span>
<span class="w"> </span><span class="nt">&quot;usage&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;prompt_tokens&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">43</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;total_tokens&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">69</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;completion_tokens&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">26</span>
<span class="w"> </span><span class="p">}</span>
<span class="p">}</span>
</pre></div>
</div>
<p>For detailed examples and command syntax, refer to the <a class="reference internal" href="commands/trtllm-serve/trtllm-serve.html"><span class="std std-doc">trtllm-serve</span></a> section.</p>
</section>
<section id="run-offline-inference-with-llm-api">
<h2>Run Offline inference with LLM API<a class="headerlink" href="#run-offline-inference-with-llm-api" title="Link to this heading">#</a></h2>
<p>The LLM API is a Python API designed to facilitate setup and inference with TensorRT LLM directly within Python. It enables model optimization by simply specifying a HuggingFace repository name or a model checkpoint. The LLM API streamlines the process by managing model loading, optimization, and inference, all through a single <code class="docutils literal notranslate"><span class="pre">LLM</span></code> instance.</p>
<p>Here is a simple example to show how to use the LLM API with TinyLlama.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="linenos"> 1</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
<span class="linenos"> 2</span>
<span class="linenos"> 3</span>
<span class="linenos"> 4</span><span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
<span class="linenos"> 5</span>
<span class="linenos"> 6</span> <span class="c1"># Model could accept HF model name, a path to local HF model,</span>
<span class="linenos"> 7</span> <span class="c1"># or TensorRT Model Optimizer&#39;s quantized checkpoints like nvidia/Llama-3.1-8B-Instruct-FP8 on HF.</span>
<span class="linenos"> 8</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="s2">&quot;TinyLlama/TinyLlama-1.1B-Chat-v1.0&quot;</span><span class="p">)</span>
<span class="linenos"> 9</span>
<span class="linenos">10</span> <span class="c1"># Sample prompts.</span>
<span class="linenos">11</span> <span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
<span class="linenos">12</span> <span class="s2">&quot;Hello, my name is&quot;</span><span class="p">,</span>
<span class="linenos">13</span> <span class="s2">&quot;The capital of France is&quot;</span><span class="p">,</span>
<span class="linenos">14</span> <span class="s2">&quot;The future of AI is&quot;</span><span class="p">,</span>
<span class="linenos">15</span> <span class="p">]</span>
<span class="linenos">16</span>
<span class="linenos">17</span> <span class="c1"># Create a sampling params.</span>
<span class="linenos">18</span> <span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
<span class="linenos">19</span>
<span class="linenos">20</span> <span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">):</span>
<span class="linenos">21</span> <span class="nb">print</span><span class="p">(</span>
<span class="linenos">22</span> <span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">output</span><span class="o">.</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span>
<span class="linenos">23</span> <span class="p">)</span>
<span class="linenos">24</span>
<span class="linenos">25</span> <span class="c1"># Got output like</span>
<span class="linenos">26</span> <span class="c1"># Prompt: &#39;Hello, my name is&#39;, Generated text: &#39;\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming&#39;</span>
<span class="linenos">27</span> <span class="c1"># Prompt: &#39;The president of the United States is&#39;, Generated text: &#39;likely to nominate a new Supreme Court justice to fill the seat vacated by the death of Antonin Scalia. The Senate should vote to confirm the&#39;</span>
<span class="linenos">28</span> <span class="c1"># Prompt: &#39;The capital of France is&#39;, Generated text: &#39;Paris.&#39;</span>
<span class="linenos">29</span> <span class="c1"># Prompt: &#39;The future of AI is&#39;, Generated text: &#39;an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are&#39;</span>
<span class="linenos">30</span>
<span class="linenos">31</span>
<span class="linenos">32</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="linenos">33</span> <span class="n">main</span><span class="p">()</span>
</pre></div>
</div>
<p>You can also directly load pre-quantized models <a class="reference external" href="https://huggingface.co/collections/nvidia/model-optimizer-66aa84f7966b3150262481a4">quantized checkpoints on Hugging Face</a> in the LLM constructor.
To learn more about the LLM API, check out the <a class="reference internal" href="llm-api/index.html"><span class="doc std std-doc">LLM API Introduction</span></a> and <a class="reference internal" href="examples/llm_api_examples.html"><span class="doc std std-doc">LLM Examples</span></a>.</p>
</section>
<section id="next-steps">
<h2>Next Steps<a class="headerlink" href="#next-steps" title="Link to this heading">#</a></h2>
<p>In this Quick Start Guide, you have:</p>
<ul class="simple">
<li><p>Learned how to deploy a model with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code> for online serving</p></li>
<li><p>Explored the LLM API for offline inference with TensorRT LLM</p></li>
</ul>
<p>To continue your journey with TensorRT LLM, explore these resources:</p>
<ul class="simple">
<li><p><strong><a class="reference internal" href="installation/index.html"><span class="std std-doc">Installation Guide</span></a></strong> - Detailed installation instructions for different platforms</p></li>
<li><p><strong><a class="reference internal" href="examples/llm_api_examples.html"><span class="doc std std-doc">Deployment Guide</span></a></strong> - Comprehensive examples for deploying LLM inference in various scenarios</p></li>
<li><p><strong><a class="reference internal" href="models/supported-models.html"><span class="std std-doc">Model Support</span></a></strong> - Check which models are supported and how to add new ones</p></li>
<li><p><strong>CLI Reference</strong> - Explore TensorRT LLM command-line tools:</p>
<ul>
<li><p><a class="reference internal" href="commands/trtllm-serve/trtllm-serve.html"><span class="std std-doc"><code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></span></a> - Deploy models for online serving</p></li>
<li><p><a class="reference internal" href="commands/trtllm-bench.html"><span class="std std-doc"><code class="docutils literal notranslate"><span class="pre">trtllm-bench</span></code></span></a> - Benchmark model performance</p></li>
<li><p><a class="reference internal" href="commands/trtllm-eval.html"><span class="std std-doc"><code class="docutils literal notranslate"><span class="pre">trtllm-eval</span></code></span></a> - Evaluate model accuracy</p></li>
</ul>
</li>
</ul>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="overview.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Overview</p>
</div>
</a>
<a class="right-next"
href="installation/index.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Installation</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#launch-docker-on-a-node-with-nvidia-gpus-deployed">Launch Docker on a node with NVIDIA GPUs deployed</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#deploy-online-serving-with-trtllm-serve">Deploy online serving with trtllm-serve</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#run-offline-inference-with-llm-api">Run Offline inference with LLM API</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#next-steps">Next Steps</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 23, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/ae8270b">ae8270b</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>