TensorRT-LLMs/_modules/tensorrt_llm/models/modeling_utils.html
2025-11-07 02:24:02 +00:00

2690 lines
354 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.models.modeling_utils &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/models/modeling_utils';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc2';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc2" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.models.modeling_utils</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.models.modeling_utils</h1><div class="highlight"><pre>
<span></span><span class="kn">import</span><span class="w"> </span><span class="nn">argparse</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">copy</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">dataclasses</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">fnmatch</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">json</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">os</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">re</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">enum</span><span class="w"> </span><span class="kn">import</span> <span class="n">IntFlag</span><span class="p">,</span> <span class="n">auto</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">functools</span><span class="w"> </span><span class="kn">import</span> <span class="n">cached_property</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pathlib</span><span class="w"> </span><span class="kn">import</span> <span class="n">Path</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Generator</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span>
<span class="n">Union</span><span class="p">)</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">safetensors</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">QuantModeWrapper</span><span class="p">,</span> <span class="n">get_init_params</span><span class="p">,</span> <span class="n">numpy_to_torch</span><span class="p">,</span>
<span class="n">release_gc</span><span class="p">,</span> <span class="n">str_dtype_to_torch</span><span class="p">,</span> <span class="n">str_dtype_to_trt</span><span class="p">,</span>
<span class="n">trt_dtype_to_torch</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">RuntimeDefaults</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">PositionEmbeddingType</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">allgather</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span>
<span class="n">cp_split_plugin</span><span class="p">,</span> <span class="n">gather_last_token_logits</span><span class="p">,</span>
<span class="n">index_select</span><span class="p">,</span> <span class="n">tanh</span><span class="p">,</span> <span class="n">view</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..layers</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">MLP</span><span class="p">,</span> <span class="n">AttentionParams</span><span class="p">,</span> <span class="n">Embedding</span><span class="p">,</span> <span class="n">FusedGatedMLP</span><span class="p">,</span>
<span class="n">FusedRgLru</span><span class="p">,</span> <span class="n">GatedMLP</span><span class="p">,</span> <span class="n">KeyValueCacheParams</span><span class="p">,</span> <span class="n">LoraParams</span><span class="p">,</span>
<span class="n">PromptTuningEmbedding</span><span class="p">,</span> <span class="n">RgLru</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..layers.attention</span><span class="w"> </span><span class="kn">import</span> <span class="n">Attention</span><span class="p">,</span> <span class="n">BertAttention</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..layers.linear</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnLinear</span><span class="p">,</span> <span class="n">Linear</span><span class="p">,</span> <span class="n">RowLinear</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..layers.lora</span><span class="w"> </span><span class="kn">import</span> <span class="n">Dora</span><span class="p">,</span> <span class="n">Lora</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..layers.moe</span><span class="w"> </span><span class="kn">import</span> <span class="n">MOE</span><span class="p">,</span> <span class="n">MoeOOTB</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..llmapi.kv_cache_type</span><span class="w"> </span><span class="kn">import</span> <span class="n">KVCacheType</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..logger</span><span class="w"> </span><span class="kn">import</span> <span class="n">logger</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..parameter</span><span class="w"> </span><span class="kn">import</span> <span class="n">Parameter</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..plugin</span><span class="w"> </span><span class="kn">import</span> <span class="n">init_all_reduce_helper</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantMode</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.functional</span><span class="w"> </span><span class="kn">import</span> <span class="n">preprocess_weights_for_mixed_gemm</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.layers</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">FP8Linear</span><span class="p">,</span> <span class="n">Fp8RowwiseFusedGatedMLP</span><span class="p">,</span>
<span class="n">Fp8RowwiseGatedMLP</span><span class="p">,</span>
<span class="n">WeightOnlyGroupwiseQuantLinear</span><span class="p">,</span>
<span class="n">WeightOnlyGroupwiseQuantRowLinear</span><span class="p">,</span>
<span class="n">WeightOnlyQuantLinear</span><span class="p">,</span>
<span class="n">WeightOnlyQuantRowLinear</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.mode</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">KV_CACHE_QUANT_ALGO_LIST</span><span class="p">,</span> <span class="n">QUANT_ALGO_LIST</span><span class="p">,</span>
<span class="n">W8A8_SQ_PLUGIN_LIST</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">fp4_utils</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..top_model_mixin</span><span class="w"> </span><span class="kn">import</span> <span class="n">TopModelMixin</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.convert_utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">weight_only_quantize_dict</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.generation_mixin</span><span class="w"> </span><span class="kn">import</span> <span class="n">GenerationMixin</span>
<span class="nd">@dataclasses</span><span class="o">.</span><span class="n">dataclass</span><span class="p">(</span><span class="n">kw_only</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">frozen</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">Gemma2ConfigGroup</span><span class="p">:</span>
<span class="n">query_pre_attn_scalar</span><span class="p">:</span> <span class="nb">int</span>
<span class="n">final_logit_softcapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span>
<span class="n">attn_logit_softcapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">keys</span><span class="p">(</span><span class="bp">cls</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">f</span><span class="o">.</span><span class="n">name</span> <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">dataclasses</span><span class="o">.</span><span class="n">fields</span><span class="p">(</span><span class="bp">cls</span><span class="p">)}</span>
<span class="nd">@dataclasses</span><span class="o">.</span><span class="n">dataclass</span><span class="p">(</span><span class="n">kw_only</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">frozen</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">Gemma3ConfigGroup</span><span class="p">:</span>
<span class="n">query_pre_attn_scalar</span><span class="p">:</span> <span class="nb">float</span>
<span class="n">final_logit_softcapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span>
<span class="n">_sliding_window_pattern</span><span class="p">:</span> <span class="nb">int</span>
<span class="n">rope_local_base_freq</span><span class="p">:</span> <span class="nb">int</span>
<span class="n">sliding_window</span><span class="p">:</span> <span class="nb">int</span>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">keys</span><span class="p">(</span><span class="bp">cls</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">f</span><span class="o">.</span><span class="n">name</span> <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">dataclasses</span><span class="o">.</span><span class="n">fields</span><span class="p">(</span><span class="bp">cls</span><span class="p">)}</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Type</span><span class="p">,</span> <span class="n">TypeVar</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing_extensions</span><span class="w"> </span><span class="kn">import</span> <span class="n">Self</span>
<span class="n">ConfigGroups</span> <span class="o">=</span> <span class="n">Union</span><span class="p">[</span><span class="n">Gemma2ConfigGroup</span><span class="p">,</span> <span class="n">Gemma3ConfigGroup</span><span class="p">]</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Groupings of config where, if one of said properties exists, we assume all of the properties exist (even if they are `None`)&quot;&quot;&quot;</span>
<span class="n">CG</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">&quot;CG&quot;</span><span class="p">,</span> <span class="n">bound</span><span class="o">=</span><span class="n">ConfigGroups</span><span class="p">)</span>
<span class="n">RuntimeDefaultsIn</span> <span class="o">=</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">RuntimeDefaults</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]]</span>
<div class="viewcode-block" id="SpeculativeDecodingMode">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.SpeculativeDecodingMode">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">SpeculativeDecodingMode</span><span class="p">(</span><span class="n">IntFlag</span><span class="p">):</span>
<span class="c1"># [WARNING] KEEP BELOW DEFINITION IN SYNC WITH cpp/tensorrt_llm/runtime/speculativeDecodingMode.h</span>
<span class="n">NONE</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">DRAFT_TOKENS_EXTERNAL</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">MEDUSA</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">LOOKAHEAD_DECODING</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">EXPLICIT_DRAFT_TOKENS</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">EAGLE</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">NGRAM</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">USER_PROVIDED</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">SAVE_HIDDEN_STATES</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<span class="n">AUTO</span> <span class="o">=</span> <span class="n">auto</span><span class="p">()</span>
<div class="viewcode-block" id="SpeculativeDecodingMode.from_arguments">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.SpeculativeDecodingMode.from_arguments">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_arguments</span><span class="p">(</span><span class="n">args</span><span class="p">:</span> <span class="n">argparse</span><span class="o">.</span><span class="n">Namespace</span><span class="p">):</span>
<span class="k">if</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">NONE</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;draft_tokens_external&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">DRAFT_TOKENS_EXTERNAL</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;medusa&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">MEDUSA</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;lookahead_decoding&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">LOOKAHEAD_DECODING</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;explicit_draft_tokens&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">EXPLICIT_DRAFT_TOKENS</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;eagle&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">EAGLE</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;ngram&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">NGRAM</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;user_provided&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">USER_PROVIDED</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;auto&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">AUTO</span>
<span class="k">elif</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span> <span class="o">==</span> <span class="s2">&quot;save_hidden_states&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">SpeculativeDecodingMode</span><span class="o">.</span><span class="n">SAVE_HIDDEN_STATES</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="kc">False</span><span class="p">,</span> <span class="s2">&quot;Unknown speculative_decoding_mode &quot;</span> <span class="o">+</span> <span class="n">args</span><span class="o">.</span><span class="n">speculative_decoding_mode</span></div>
</div>
<div class="viewcode-block" id="QuantConfig">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.models.QuantConfig">[docs]</a>
<span class="nd">@dataclasses</span><span class="o">.</span><span class="n">dataclass</span>
<span class="k">class</span><span class="w"> </span><span class="nc">QuantConfig</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Serializable quantization configuration class, part of the PretrainedConfig.</span>
<span class="sd"> Args:</span>
<span class="sd"> quant_algo (tensorrt_llm.quantization.mode.QuantAlgo, optional): Quantization algorithm. Defaults to None.</span>
<span class="sd"> kv_cache_quant_algo (tensorrt_llm.quantization.mode.QuantAlgo, optional): KV cache quantization algorithm. Defaults to None.</span>
<span class="sd"> group_size (int): The group size for group-wise quantization. Defaults to 128.</span>
<span class="sd"> smoothquant_val (float): The smoothing parameter alpha used in smooth quant. Defaults to 0.5.</span>
<span class="sd"> clamp_val (List[float], optional): The clamp values used in FP8 rowwise quantization. Defaults to None.</span>
<span class="sd"> use_meta_recipe (bool): Whether to use Meta&#39;s recipe for FP8 rowwise quantization. Defaults to False.</span>
<span class="sd"> has_zero_point (bool): Whether to use zero point for quantization. Defaults to False.</span>
<span class="sd"> pre_quant_scale (bool): Whether to use pre-quant scale for quantization. Defaults to False.</span>
<span class="sd"> exclude_modules (List[str], optional): The module name patterns that are skipped in quantization. Defaults to None.</span>
<span class="sd"> mamba_ssm_cache_dtype (str, optional): The data type for mamba SSM cache. Defaults to None.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantAlgo</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_cache_quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantAlgo</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">group_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">smoothquant_val</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="n">clamp_val</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">use_meta_recipe</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">has_zero_point</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">pre_quant_scale</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">exclude_modules</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">mamba_ssm_cache_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nd">@cached_property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">quant_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">QuantModeWrapper</span><span class="p">:</span>
<span class="n">quant_mode_list</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">QuantMode</span><span class="o">.</span><span class="n">from_quant_algo</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span><span class="p">,</span>
<span class="p">)</span>
<span class="p">]</span>
<span class="k">return</span> <span class="n">QuantModeWrapper</span><span class="p">(</span><span class="n">quant_mode_list</span><span class="p">)</span>
<span class="nd">@cached_property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">layer_quant_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">QuantMode</span><span class="p">:</span>
<span class="k">return</span> <span class="n">QuantMode</span><span class="o">.</span><span class="n">from_quant_algo</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span><span class="p">,</span>
<span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_use_plugin_sq</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">in</span> <span class="n">W8A8_SQ_PLUGIN_LIST</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_requires_calibration</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">in</span> <span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">QUANT_ALGO_LIST</span><span class="p">)</span> <span class="o">-</span> <span class="p">{</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A16</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8_PER_CHANNEL_PER_TOKEN</span>
<span class="p">})</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span> <span class="ow">in</span> <span class="n">KV_CACHE_QUANT_ALGO_LIST</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_requires_modelopt_quantization</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">NVFP4</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A8_SQ_PER_CHANNEL</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">MIXED_PRECISION</span>
<span class="p">]:</span>
<span class="k">return</span> <span class="kc">True</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">True</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_quant_cfg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">module_name</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_modules</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="n">exclude_module</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_modules</span><span class="p">:</span>
<span class="k">if</span> <span class="n">exclude_module</span> <span class="o">==</span> <span class="n">module_name</span> <span class="ow">or</span> <span class="p">(</span>
<span class="n">exclude_module</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;*&#39;</span><span class="p">)</span>
<span class="ow">and</span> <span class="n">module_name</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="n">exclude_module</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])):</span>
<span class="k">return</span> <span class="n">LayerQuantConfig</span><span class="p">(</span><span class="n">quant_algo</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">quantized_layers</span><span class="o">=</span><span class="p">{})</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_modelopt_qformat</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">algo_to_modelopt_map</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A16</span><span class="p">:</span> <span class="s2">&quot;int8_wo&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16</span><span class="p">:</span> <span class="s2">&quot;int4_wo&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">NVFP4</span><span class="p">:</span> <span class="s2">&quot;nvfp4&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span> <span class="s2">&quot;fp8&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">:</span> <span class="s2">&quot;int4_awq&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span><span class="p">:</span> <span class="s2">&quot;w4a8_awq&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A8_SQ_PER_CHANNEL</span><span class="p">:</span> <span class="s2">&quot;int8_sq&quot;</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="o">!=</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">MIXED_PRECISION</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;We don&#39;t support mixed precision in QuantConfig&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="ow">in</span> <span class="n">algo_to_modelopt_map</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;We don&#39;t use Modelopt for quantization algorithm </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span><span class="si">}</span><span class="s2">, you probably shall not call this&quot;</span>
<span class="k">return</span> <span class="n">algo_to_modelopt_map</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">&#39;full_prec&#39;</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_modelopt_kv_cache_dtype</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">algo_to_modelopt_map</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span> <span class="s1">&#39;fp8&#39;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">INT8</span><span class="p">:</span> <span class="s1">&#39;int8&#39;</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span> <span class="ow">in</span> <span class="n">algo_to_modelopt_map</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;We don&#39;t use Modelopt for quantization algorithm </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span><span class="si">}</span><span class="s2">, you probably shall not call this&quot;</span>
<span class="k">return</span> <span class="n">algo_to_modelopt_map</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<div class="viewcode-block" id="QuantConfig.is_module_excluded_from_quantization">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.models.QuantConfig.is_module_excluded_from_quantization">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_module_excluded_from_quantization</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Check if the module is excluded from quantization.</span>
<span class="sd"> Args:</span>
<span class="sd"> name (str): The name of the module.</span>
<span class="sd"> Returns:</span>
<span class="sd"> bool: True if the module is excluded from quantization, False otherwise.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_modules</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">for</span> <span class="n">exclude_module</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_modules</span><span class="p">:</span>
<span class="k">if</span> <span class="n">fnmatch</span><span class="o">.</span><span class="n">fnmatchcase</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">exclude_module</span><span class="p">):</span>
<span class="k">return</span> <span class="kc">True</span>
<span class="k">return</span> <span class="kc">False</span></div>
<div class="viewcode-block" id="QuantConfig.from_dict">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.models.QuantConfig.from_dict">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_dict</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="nb">dict</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s1">&#39;QuantConfig&#39;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Create a QuantConfig instance from a dict.</span>
<span class="sd"> Args:</span>
<span class="sd"> config (dict): The dict used to create QuantConfig.</span>
<span class="sd"> Returns:</span>
<span class="sd"> tensorrt_llm.models.modeling_utils.QuantConfig: The QuantConfig created from dict.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">obj</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="o">**</span><span class="n">config</span><span class="p">)</span>
<span class="k">return</span> <span class="n">obj</span></div>
<div class="viewcode-block" id="QuantConfig.to_dict">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.models.QuantConfig.to_dict">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">to_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">dict</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Dump a QuantConfig instance to a dict.</span>
<span class="sd"> Returns:</span>
<span class="sd"> dict: The dict dumped from QuantConfig.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">dataclasses</span><span class="o">.</span><span class="n">asdict</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span></div>
</div>
<span class="nd">@dataclasses</span><span class="o">.</span><span class="n">dataclass</span>
<span class="k">class</span><span class="w"> </span><span class="nc">LayerQuantConfig</span><span class="p">(</span><span class="n">QuantConfig</span><span class="p">):</span>
<span class="n">quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_cache_quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">quantized_layers</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">QuantConfig</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_quant_algo</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">quantized_layers</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">QuantConfig</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="o">=</span> <span class="n">quant_algo</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quantized_layers</span> <span class="o">=</span> <span class="n">quantized_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span> <span class="o">=</span> <span class="n">kv_cache_quant_algo</span>
<span class="bp">self</span><span class="o">.</span><span class="n">auto_quant_mode</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer_config</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantized_layers</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">auto_quant_mode</span><span class="o">.</span><span class="n">update</span><span class="p">({</span>
<span class="n">name</span><span class="p">:</span>
<span class="n">QuantMode</span><span class="o">.</span><span class="n">from_quant_algo</span><span class="p">(</span>
<span class="n">layer_config</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_quant_algo</span><span class="p">,</span>
<span class="p">)</span>
<span class="p">})</span>
<span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Warning: Unrecognized parameter &#39;</span><span class="si">{</span><span class="n">key</span><span class="si">}</span><span class="s2">&#39; with value &#39;</span><span class="si">{</span><span class="n">kwargs</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="si">}</span><span class="s2">&#39;&quot;</span>
<span class="p">)</span>
<span class="nd">@cached_property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">quant_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">quant_mode_list</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">auto_quant_mode</span><span class="o">.</span><span class="n">values</span><span class="p">()))</span>
<span class="k">return</span> <span class="n">QuantModeWrapper</span><span class="p">(</span><span class="n">quant_mode_list</span><span class="p">)</span>
<span class="c1">#@lru_cache(maxsize=None)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">layer_quant_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">layer_name</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">QuantMode</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">quant_mode</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">auto_quant_mode</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">fnmatch</span><span class="o">.</span><span class="n">fnmatch</span><span class="p">(</span><span class="n">layer_name</span><span class="p">,</span> <span class="n">name</span><span class="p">):</span>
<span class="k">return</span> <span class="n">quant_mode</span>
<span class="k">return</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="nd">@cached_property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">auto_quant_list</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">quant_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">_</span><span class="p">,</span> <span class="n">layer_config</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantized_layers</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">quant_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">layer_config</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="nb">set</span><span class="p">(</span><span class="n">quant_list</span><span class="p">))</span>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_dict</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
<span class="n">quantized_layers</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;quantized_layers&#39;</span><span class="p">,</span> <span class="p">{})</span>
<span class="n">quantized_layers_dict</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">layer_name</span><span class="p">:</span> <span class="n">QuantConfig</span><span class="p">(</span><span class="o">**</span><span class="n">layer_config</span><span class="p">)</span>
<span class="k">for</span> <span class="n">layer_name</span><span class="p">,</span> <span class="n">layer_config</span> <span class="ow">in</span> <span class="n">quantized_layers</span><span class="o">.</span><span class="n">items</span><span class="p">()</span>
<span class="p">}</span>
<span class="n">obj</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">quantized_layers</span><span class="o">=</span><span class="n">quantized_layers_dict</span><span class="p">,</span> <span class="o">**</span><span class="n">config</span><span class="p">)</span>
<span class="k">return</span> <span class="n">obj</span>
<span class="c1">#@lru_cache(maxsize=None)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_quant_cfg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">module_name</span><span class="p">):</span>
<span class="n">quant_res</span> <span class="o">=</span> <span class="n">QuantConfig</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">quant_cfg</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantized_layers</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">fnmatch</span><span class="o">.</span><span class="n">fnmatch</span><span class="p">(</span><span class="n">module_name</span><span class="p">,</span> <span class="n">name</span><span class="p">):</span>
<span class="n">quant_res</span> <span class="o">=</span> <span class="n">quant_cfg</span>
<span class="k">break</span>
<span class="k">return</span> <span class="n">quant_res</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_modelopt_qformat</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">algo_to_modelopt_map</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">NVFP4</span><span class="p">:</span> <span class="s2">&quot;nvfp4&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span> <span class="s2">&quot;fp8&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">:</span> <span class="s2">&quot;int4_awq&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span><span class="p">:</span> <span class="s2">&quot;w4a8_awq&quot;</span><span class="p">,</span>
<span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A8_SQ_PER_CHANNEL</span><span class="p">:</span> <span class="s2">&quot;int8_sq&quot;</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">MIXED_PRECISION</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;We only support mixed precision quantization in LayerQuantConfig&quot;</span>
<span class="n">autoq_format</span> <span class="o">=</span> <span class="s1">&#39;,&#39;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span>
<span class="p">[</span><span class="n">algo_to_modelopt_map</span><span class="p">[</span><span class="n">item</span><span class="p">]</span> <span class="k">for</span> <span class="n">item</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">auto_quant_list</span><span class="p">])</span>
<span class="k">return</span> <span class="n">autoq_format</span>
<span class="k">def</span><span class="w"> </span><span class="nf">to_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="n">output</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;auto_quant_mode&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">output</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;quant_mode&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">per_layer_config</span> <span class="ow">in</span> <span class="n">output</span><span class="p">[</span><span class="s1">&#39;quantized_layers&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">per_layer_config</span> <span class="o">=</span> <span class="n">per_layer_config</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
<span class="n">output</span><span class="p">[</span><span class="s1">&#39;quantized_layers&#39;</span><span class="p">][</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">per_layer_config</span>
<span class="k">return</span> <span class="n">output</span>
<div class="viewcode-block" id="PretrainedConfig">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">PretrainedConfig</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">architecture</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">num_hidden_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">vocab_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_act</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;gelu&#39;</span><span class="p">,</span>
<span class="n">logits_dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">norm_epsilon</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span>
<span class="n">PositionEmbeddingType</span><span class="p">,</span>
<span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">num_key_value_heads</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">intermediate_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">Mapping</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">quantization</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">use_parallel_embedding</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">embedding_sharding_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">head_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">qk_layernorm</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">runtime_defaults</span><span class="p">:</span> <span class="s2">&quot;RuntimeDefaultsIn&quot;</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">architecture</span> <span class="o">=</span> <span class="n">architecture</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">=</span> <span class="n">vocab_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">=</span> <span class="n">num_hidden_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_act</span> <span class="o">=</span> <span class="n">hidden_act</span>
<span class="bp">self</span><span class="o">.</span><span class="n">logits_dtype</span> <span class="o">=</span> <span class="n">logits_dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_epsilon</span> <span class="o">=</span> <span class="n">norm_epsilon</span>
<span class="bp">self</span><span class="o">.</span><span class="n">runtime_defaults</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">create_runtime_defaults</span><span class="p">(</span><span class="n">runtime_defaults</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">position_embedding_type</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">from_string</span><span class="p">(</span>
<span class="n">position_embedding_type</span><span class="p">)</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">position_embedding_type</span><span class="p">,</span> <span class="n">PositionEmbeddingType</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">position_embedding_type</span>
<span class="k">if</span> <span class="n">num_key_value_heads</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">num_key_value_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_key_value_heads</span> <span class="o">=</span> <span class="n">num_key_value_heads</span>
<span class="k">if</span> <span class="n">intermediate_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">intermediate_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">*</span> <span class="mi">4</span>
<span class="bp">self</span><span class="o">.</span><span class="n">intermediate_size</span> <span class="o">=</span> <span class="n">intermediate_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="k">if</span> <span class="n">mapping</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">mapping</span> <span class="o">=</span> <span class="n">Mapping</span><span class="p">()</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mapping</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="n">mapping</span> <span class="o">=</span> <span class="n">Mapping</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">mapping</span><span class="p">)</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mapping</span><span class="p">,</span> <span class="n">Mapping</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="n">mapping</span>
<span class="k">if</span> <span class="n">quantization</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">quantization</span> <span class="o">=</span> <span class="n">QuantConfig</span><span class="p">()</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">quantization</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="n">quantization</span> <span class="o">=</span> <span class="n">QuantConfig</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">quantization</span><span class="p">)</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">quantization</span><span class="p">,</span> <span class="n">QuantConfig</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quantization</span> <span class="o">=</span> <span class="n">quantization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_parallel_embedding</span> <span class="o">=</span> <span class="n">use_parallel_embedding</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_sharding_dim</span> <span class="o">=</span> <span class="n">embedding_sharding_dim</span>
<span class="k">if</span> <span class="n">head_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">head_size</span> <span class="o">=</span> <span class="n">head_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span> <span class="o">=</span> <span class="n">qk_layernorm</span>
<span class="k">if</span> <span class="n">rotary_embedding_dim</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rotary_embedding_percentage</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;rotary_pct&#39;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;rotary_dim&#39;</span><span class="p">,</span> <span class="nb">int</span><span class="p">(</span><span class="n">head_size</span> <span class="o">*</span> <span class="n">rotary_embedding_percentage</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="n">rotary_embedding_dim</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">try</span><span class="p">:</span>
<span class="nb">setattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Implicitly setting </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">.</span><span class="si">{</span><span class="n">key</span><span class="si">}</span><span class="s2"> = </span><span class="si">{</span><span class="n">value</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="k">except</span> <span class="ne">AttributeError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">err</span>
<div class="viewcode-block" id="PretrainedConfig.create_runtime_defaults">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.create_runtime_defaults">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">create_runtime_defaults</span><span class="p">(</span>
<span class="n">defaults</span><span class="p">:</span> <span class="s2">&quot;RuntimeDefaultsIn&quot;</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="n">RuntimeDefaults</span><span class="p">]:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">defaults</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">return</span> <span class="n">RuntimeDefaults</span><span class="p">(</span><span class="o">**</span><span class="n">defaults</span><span class="p">)</span>
<span class="k">return</span> <span class="n">defaults</span></div>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">kv_dtype</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># TODO: need to align the kv dtype</span>
<span class="c1"># now assume the kv cache is for all layers</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_int8_kv_cache</span><span class="p">():</span>
<span class="k">return</span> <span class="s1">&#39;int8&#39;</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_fp8_kv_cache</span><span class="p">():</span>
<span class="k">return</span> <span class="s1">&#39;fp8&#39;</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_fp4_kv_cache</span><span class="p">():</span>
<span class="k">return</span> <span class="s1">&#39;fp4&#39;</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dtype</span>
<div class="viewcode-block" id="PretrainedConfig.set_if_not_exist">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.set_if_not_exist">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">set_if_not_exist</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
<span class="nb">setattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedConfig.from_dict">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.from_dict">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_dict</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
<span class="c1"># Maybe we need AutoConfig for this</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.</span><span class="w"> </span><span class="kn">import</span> <span class="n">MODEL_MAP</span>
<span class="n">model_cls</span> <span class="o">=</span> <span class="n">MODEL_MAP</span><span class="p">[</span><span class="n">config</span><span class="p">[</span><span class="s1">&#39;architecture&#39;</span><span class="p">]]</span>
<span class="n">config_cls</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">model_cls</span><span class="p">,</span> <span class="s1">&#39;config_class&#39;</span><span class="p">,</span> <span class="bp">cls</span><span class="p">)</span>
<span class="k">return</span> <span class="n">config_cls</span><span class="p">(</span><span class="o">**</span><span class="n">config</span><span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedConfig.to_dict">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.to_dict">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">to_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="n">output</span><span class="p">[</span><span class="s1">&#39;position_embedding_type&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">output</span><span class="p">[</span><span class="s1">&#39;mapping&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
<span class="n">output</span><span class="p">[</span><span class="s1">&#39;mapping&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;rank&#39;</span><span class="p">)</span>
<span class="n">output</span><span class="p">[</span><span class="s1">&#39;quantization&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span>
<span class="k">return</span> <span class="n">output</span></div>
<div class="viewcode-block" id="PretrainedConfig.from_json_file">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.from_json_file">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_json_file</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config_file</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">config_file</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">config</span> <span class="o">=</span> <span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">obj</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="k">if</span> <span class="n">obj</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">MIXED_PRECISION</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">layer_config_path</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">config_file</span><span class="p">)</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span>
<span class="s1">&#39;config.json&#39;</span><span class="p">,</span> <span class="s1">&#39;quant_cfg.json&#39;</span><span class="p">)</span>
<span class="n">obj</span><span class="o">.</span><span class="n">to_layer_quant_config</span><span class="p">(</span><span class="n">layer_config_path</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Encounter error &#39;</span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">&#39; for read quantization config &#39;</span><span class="si">{</span><span class="n">layer_config_path</span><span class="si">}</span><span class="s2">&#39;&quot;</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">obj</span></div>
<div class="viewcode-block" id="PretrainedConfig.from_checkpoint">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.from_checkpoint">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_checkpoint</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">ckpt_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">from_json_file</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">ckpt_dir</span><span class="p">,</span> <span class="s1">&#39;config.json&#39;</span><span class="p">))</span></div>
<div class="viewcode-block" id="PretrainedConfig.to_json_file">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.to_json_file">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">to_json_file</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config_file</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">config_file</span><span class="p">,</span> <span class="s1">&#39;w&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">json</span><span class="o">.</span><span class="n">dump</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">to_dict</span><span class="p">(),</span> <span class="n">f</span><span class="p">,</span> <span class="n">indent</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedConfig.to_layer_quant_config">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.to_layer_quant_config">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">to_layer_quant_config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config_file</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">config_file</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">config</span> <span class="o">=</span> <span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s2">&quot;MixtralForCausalLM&quot;</span><span class="p">:</span>
<span class="k">for</span> <span class="n">layer_name</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">config</span><span class="p">[</span><span class="s2">&quot;quantized_layers&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
<span class="n">quant_cfg</span> <span class="o">=</span> <span class="n">config</span><span class="p">[</span><span class="s2">&quot;quantized_layers&quot;</span><span class="p">][</span><span class="n">layer_name</span><span class="p">]</span>
<span class="k">if</span> <span class="s2">&quot;mlp.fc&quot;</span> <span class="ow">in</span> <span class="n">layer_name</span> <span class="ow">or</span> <span class="s2">&quot;mlp.proj&quot;</span> <span class="ow">in</span> <span class="n">layer_name</span><span class="p">:</span>
<span class="n">moe_name</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">layer_name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">moe_name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">config</span><span class="p">[</span><span class="s2">&quot;quantized_layers&quot;</span><span class="p">]:</span>
<span class="n">config</span><span class="p">[</span><span class="s2">&quot;quantized_layers&quot;</span><span class="p">][</span><span class="n">moe_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">quant_cfg</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">quant_cfg</span> <span class="o">==</span> <span class="n">config</span><span class="p">[</span><span class="s2">&quot;quantized_layers&quot;</span><span class="p">][</span>
<span class="n">moe_name</span><span class="p">],</span> <span class="s2">&quot;MoE module needs to have the same quantization format for non-rounter sub-modules&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quantization</span> <span class="o">=</span> <span class="n">LayerQuantConfig</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">config</span><span class="p">)</span></div>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">quant_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">quant_mode</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">quant_algo</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">quant_algo</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_quant_cfg</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">module_name</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">_get_quant_cfg</span><span class="p">(</span><span class="n">module_name</span><span class="p">)</span>
<div class="viewcode-block" id="PretrainedConfig.set_rank">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.set_rank">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">set_rank</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">rank</span> <span class="o">=</span> <span class="n">rank</span></div>
<div class="viewcode-block" id="PretrainedConfig.get_config_group">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.get_config_group">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_config_group</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">group_cls</span><span class="p">:</span> <span class="s2">&quot;Type[CG]&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;CG&quot;</span><span class="p">:</span>
<span class="n">cfg</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_dict</span><span class="p">()</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">group_cls</span><span class="o">.</span><span class="n">keys</span><span class="p">()}</span>
<span class="k">return</span> <span class="n">group_cls</span><span class="p">(</span><span class="o">**</span><span class="n">cfg</span><span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedConfig.has_config_group">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.has_config_group">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">has_config_group</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">group_cls</span><span class="p">:</span> <span class="s2">&quot;Type[CG]&quot;</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;bool&quot;</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">all</span><span class="p">(</span><span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">group_cls</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span></div>
<div class="viewcode-block" id="PretrainedConfig.for_each_rank">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedConfig.for_each_rank">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">for_each_rank</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;Generator[Self, None, None]&quot;</span><span class="p">:</span>
<span class="k">for</span> <span class="n">rank</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">world_size</span><span class="p">):</span>
<span class="n">config_copy</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="n">config_copy</span><span class="o">.</span><span class="n">set_rank</span><span class="p">(</span><span class="n">rank</span><span class="p">)</span>
<span class="k">yield</span> <span class="n">config_copy</span></div>
</div>
<span class="k">class</span><span class="w"> </span><span class="nc">DecoderLayerList</span><span class="p">(</span><span class="n">ModuleList</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_layers</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">quant_mode</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">([</span><span class="bp">cls</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="n">idx</span><span class="p">)</span> <span class="k">for</span> <span class="n">idx</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">])</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">lora_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">vision_token_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">fill_none_tensor_list</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">))</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">presents</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">layer_idx</span><span class="p">,</span> <span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">past</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span>
<span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">)):</span>
<span class="n">lora_layer_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_params</span><span class="o">.</span><span class="n">lora_ranks</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lora_layer_params</span> <span class="o">=</span> <span class="n">lora_params</span><span class="o">.</span><span class="n">get_layer_params</span><span class="p">(</span><span class="n">layer_idx</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">if</span> <span class="n">position_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;position_ids&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">position_ids</span>
<span class="k">if</span> <span class="n">vision_token_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;vision_token_mask&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">vision_token_mask</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;lora_layer_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">lora_layer_params</span>
<span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spec_decoding_params</span>
<span class="k">if</span> <span class="n">mrope_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;mrope_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">mrope_params</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">reduce_fusion</span><span class="p">:</span>
<span class="k">if</span> <span class="n">layer_idx</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]:</span>
<span class="n">qkv_activation_scaling_factor</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">user_buffer</span><span class="p">:</span>
<span class="n">qkv_linear</span> <span class="o">=</span> <span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">attention</span><span class="o">.</span><span class="n">qkv</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_fp8_qdq</span><span class="p">():</span>
<span class="n">qkv_activation_scaling_factor</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
<span class="n">qkv_linear</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="o">.</span>
<span class="n">copy</span><span class="p">())</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_nvfp4</span><span class="p">():</span>
<span class="n">qkv_activation_scaling_factor</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
<span class="n">qkv_linear</span><span class="o">.</span><span class="n">activation_global_scaling_factor</span><span class="o">.</span>
<span class="n">raw_value</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;next_layer_input_layernorm_args&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span>
<span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">input_layernorm</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">input_layernorm</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="n">qkv_activation_scaling_factor</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;next_layer_input_layernorm_args&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">norm_quant_fusion</span><span class="p">:</span>
<span class="k">if</span> <span class="n">layer_idx</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_list</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">activation_scaling_factor</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
<span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">attention</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span>
<span class="n">activation_global_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="o">.</span><span class="n">copy</span><span class="p">())</span>
<span class="k">except</span><span class="p">:</span>
<span class="n">activation_scaling_factor</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;next_layer_input_layernorm_args&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span>
<span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">input_layernorm</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="bp">self</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">input_layernorm</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="n">activation_scaling_factor</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;next_layer_input_layernorm_args&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="n">KeyValueCacheParams</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="p">[</span><span class="n">past</span><span class="p">],</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">),</span>
<span class="n">attention_params</span><span class="o">=</span><span class="n">attention_params</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">presents</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">presents</span>
<span class="k">return</span> <span class="n">hidden_states</span>
<span class="k">class</span><span class="w"> </span><span class="nc">PostInitCaller</span><span class="p">(</span><span class="nb">type</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__call__</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">obj</span> <span class="o">=</span> <span class="nb">type</span><span class="o">.</span><span class="fm">__call__</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">obj</span><span class="o">.</span><span class="n">__post_init__</span><span class="p">()</span>
<span class="k">return</span> <span class="n">obj</span>
<div class="viewcode-block" id="PretrainedModel">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">PretrainedModel</span><span class="p">(</span><span class="n">Module</span><span class="p">,</span>
<span class="n">GenerationMixin</span><span class="p">,</span>
<span class="n">TopModelMixin</span><span class="p">,</span>
<span class="n">metaclass</span><span class="o">=</span><span class="n">PostInitCaller</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">PretrainedConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">init_all_reduce_helper</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
<span class="k">def</span><span class="w"> </span><span class="nf">__post_init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.quantize</span><span class="w"> </span><span class="kn">import</span> <span class="n">quantize</span>
<span class="n">quantize</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="p">)</span>
<span class="c1"># Currently, use_parallel_embedding must be enabled before weight loading;</span>
<span class="c1"># otherwise, the model will be inconsistent with the weights loaded from checkpoint.</span>
<span class="n">optimize_model</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">use_parallel_embedding</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">use_parallel_embedding</span><span class="p">)</span>
<div class="viewcode-block" id="PretrainedModel.release">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.release">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">release</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">release_gc</span><span class="p">()</span></div>
<span class="k">def</span><span class="w"> </span><span class="fm">__del__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">release</span><span class="p">()</span>
<div class="viewcode-block" id="PretrainedModel.check_config">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.check_config">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">check_config</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="si">}</span><span class="s2"> is an abstract class. Only classes inheriting this class can be called.&quot;</span>
<span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedModel.from_config">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.from_config">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_config</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">PretrainedConfig</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">cls</span><span class="p">(</span><span class="n">config</span><span class="p">)</span></div>
<div class="viewcode-block" id="PretrainedModel.from_checkpoint">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.from_checkpoint">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_checkpoint</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">ckpt_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">rank</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">PretrainedConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">preprocess_weights_hook</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Callable</span><span class="p">[[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">]],</span>
<span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">config</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">config</span> <span class="o">=</span> <span class="n">PretrainedConfig</span><span class="o">.</span><span class="n">from_json_file</span><span class="p">(</span>
<span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">ckpt_dir</span><span class="p">,</span> <span class="s1">&#39;config.json&#39;</span><span class="p">))</span>
<span class="k">if</span> <span class="n">rank</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">config</span><span class="o">.</span><span class="n">set_rank</span><span class="p">(</span><span class="n">rank</span><span class="p">)</span>
<span class="n">rank</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">rank</span>
<span class="k">if</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="c1"># tp_cp_pp rank -&gt; tp_pp rank: because different cp ranks share the same ckpt</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="n">cp_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span>
<span class="n">rank</span> <span class="o">=</span> <span class="n">rank</span> <span class="o">%</span> <span class="n">tp_size</span> <span class="o">+</span> <span class="n">rank</span> <span class="o">//</span> <span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="n">cp_size</span><span class="p">)</span> <span class="o">*</span> <span class="n">tp_size</span>
<span class="n">weights_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">ckpt_dir</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;rank</span><span class="si">{</span><span class="n">rank</span><span class="si">}</span><span class="s1">.safetensors&#39;</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isfile</span><span class="p">(</span><span class="n">weights_path</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">safetensors</span><span class="o">.</span><span class="n">torch</span><span class="o">.</span><span class="n">load_file</span><span class="p">(</span><span class="n">weights_path</span><span class="p">)</span>
<span class="n">is_checkpoint_pruned</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;is_pruned&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="k">if</span> <span class="n">preprocess_weights_hook</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">preprocess_weights_hook</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">preprocess_weights</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span>
<span class="n">config</span><span class="p">,</span>
<span class="n">from_pruned</span><span class="o">=</span><span class="n">is_checkpoint_pruned</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">from_pruned</span><span class="o">=</span><span class="n">is_checkpoint_pruned</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span></div>
<div class="viewcode-block" id="PretrainedModel.load">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.load">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">load</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="n">from_pruned</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="n">required_names</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">():</span>
<span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">is_inited</span><span class="p">():</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="c1"># Exemption for embedding sharing</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;lm_head.weight&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">any</span><span class="p">(</span>
<span class="n">k</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;vocab_embedding.weight&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;lm_head.per_channel_scale&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">any</span><span class="p">(</span>
<span class="n">k</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;vocab_embedding.per_channel_scale&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">keys</span><span class="p">()):</span>
<span class="k">continue</span>
<span class="n">required_names</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="n">provided_names</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">weights</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">required_names</span><span class="o">.</span><span class="n">issubset</span><span class="p">(</span><span class="n">provided_names</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Required but not provided tensors:</span><span class="si">{</span><span class="n">required_names</span><span class="o">.</span><span class="n">difference</span><span class="p">(</span><span class="n">provided_names</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">provided_names</span><span class="o">.</span><span class="n">issubset</span><span class="p">(</span><span class="n">required_names</span><span class="p">):</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Provided but not required tensors: </span><span class="si">{</span><span class="n">provided_names</span><span class="o">.</span><span class="n">difference</span><span class="p">(</span><span class="n">required_names</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">provided_names</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">from_pruned</span><span class="p">:</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">param</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Encounter error &#39;</span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">&#39; for parameter &#39;</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2">&#39;&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">param</span><span class="o">.</span><span class="n">set_value_or_dummy</span><span class="p">(</span><span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">])</span></div>
<div class="viewcode-block" id="PretrainedModel.save_checkpoint">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.save_checkpoint">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">save_checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output_dir</span><span class="p">,</span> <span class="n">save_config</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="c1"># multiple ranks could share same config.json, so adding a save_config parameter to let user avoiding writing config.json in all ranks</span>
<span class="n">rank</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">rank</span>
<span class="n">weights</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">name</span><span class="p">:</span> <span class="n">numpy_to_torch</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">()</span>
<span class="p">}</span>
<span class="c1"># If there are some tensors share memory, this will lead to error when we call &quot;save_file&quot;. So, for repeated tensors, we</span>
<span class="c1"># clone the tensors to prevent this issue.</span>
<span class="n">data_ptrs</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">()</span> <span class="ow">in</span> <span class="n">data_ptrs</span><span class="p">:</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span>
<span class="n">data_ptrs</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">())</span>
<span class="n">safetensors</span><span class="o">.</span><span class="n">torch</span><span class="o">.</span><span class="n">save_file</span><span class="p">(</span>
<span class="n">weights</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">output_dir</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;rank</span><span class="si">{</span><span class="n">rank</span><span class="si">}</span><span class="s1">.safetensors&#39;</span><span class="p">))</span>
<span class="k">if</span> <span class="n">save_config</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">to_json_file</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">output_dir</span><span class="p">,</span> <span class="s1">&#39;config.json&#39;</span><span class="p">))</span></div>
<div class="viewcode-block" id="PretrainedModel.prepare_inputs">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.prepare_inputs">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">prepare_inputs</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_input_len</span><span class="p">,</span>
<span class="n">max_seq_len</span><span class="p">,</span>
<span class="n">max_num_tokens</span><span class="p">,</span>
<span class="n">use_cache</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">opt_num_tokens</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_embedding_table_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">position_encoding_2d</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">max_draft_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">speculative_decoding_draft_tokens_external</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">gather_context_logits</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">lora_target_modules</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">opt_batch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">num_hidden_layers</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the</span>
<span class="sd"> ranges of the dimensions of when using TRT dynamic shapes.</span>
<span class="sd"> @return: a list contains values which can be fed into the self.forward()</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="c1"># Prepare inputs</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="n">use_gpt_attention_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span>
<span class="n">use_gemm_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_plugin</span>
<span class="n">paged_kv_cache</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="n">tokens_per_block</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">tokens_per_block</span>
<span class="n">use_lora_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span>
<span class="n">multiple_profiles</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">multiple_profiles</span>
<span class="n">streamingllm</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">streamingllm</span>
<span class="n">pp_reduce_scatter</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">pp_reduce_scatter</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">DISABLED</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">paged_kv_cache</span><span class="p">:</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">PAGED</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span>
<span class="n">model_inputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prepare_basic_inputs</span><span class="p">(</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">max_input_len</span><span class="o">=</span><span class="n">max_input_len</span><span class="p">,</span>
<span class="n">max_seq_len</span><span class="o">=</span><span class="n">max_seq_len</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_key_value_heads</span><span class="p">,</span>
<span class="n">head_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">head_size</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="n">num_hidden_layers</span>
<span class="k">if</span> <span class="n">num_hidden_layers</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">,</span>
<span class="n">kv_dtype</span><span class="o">=</span><span class="n">str_dtype_to_trt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">kv_dtype</span><span class="p">),</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">use_gpt_attention_plugin</span><span class="o">=</span><span class="n">use_gpt_attention_plugin</span><span class="p">,</span>
<span class="n">use_gemm_plugin</span><span class="o">=</span><span class="n">use_gemm_plugin</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">kv_cache_type</span><span class="p">,</span>
<span class="n">tokens_per_block</span><span class="o">=</span><span class="n">tokens_per_block</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_num_tokens</span><span class="o">=</span><span class="n">max_num_tokens</span><span class="p">,</span>
<span class="n">opt_num_tokens</span><span class="o">=</span><span class="n">opt_num_tokens</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">str_dtype_to_trt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="n">prompt_embedding_table_size</span><span class="o">=</span><span class="n">prompt_embedding_table_size</span><span class="p">,</span>
<span class="n">position_encoding_2d</span><span class="o">=</span><span class="n">position_encoding_2d</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">gather_context_logits</span><span class="o">=</span><span class="n">gather_context_logits</span><span class="p">,</span>
<span class="n">use_lora_plugin</span><span class="o">=</span><span class="n">use_lora_plugin</span><span class="p">,</span>
<span class="n">max_draft_len</span><span class="o">=</span><span class="n">max_draft_len</span><span class="p">,</span>
<span class="n">speculative_decoding_draft_tokens_external</span><span class="o">=</span>
<span class="n">speculative_decoding_draft_tokens_external</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="o">=</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="p">,</span>
<span class="n">lora_target_modules</span><span class="o">=</span><span class="n">lora_target_modules</span><span class="p">,</span>
<span class="n">multiple_profiles</span><span class="o">=</span><span class="n">multiple_profiles</span><span class="p">,</span>
<span class="n">streamingllm</span><span class="o">=</span><span class="n">streamingllm</span><span class="p">,</span>
<span class="n">opt_batch_size</span><span class="o">=</span><span class="n">opt_batch_size</span><span class="p">,</span>
<span class="n">pp_reduce_scatter</span><span class="o">=</span><span class="n">pp_reduce_scatter</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin_size</span><span class="o">=</span><span class="n">mrope_rotary_cos_sin_size</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;input_ids&#39;</span><span class="p">:</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;input_ids&#39;</span><span class="p">],</span>
<span class="s1">&#39;position_ids&#39;</span><span class="p">:</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;position_ids&#39;</span><span class="p">],</span>
<span class="s1">&#39;use_cache&#39;</span><span class="p">:</span>
<span class="n">kv_cache_type</span> <span class="o">!=</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">DISABLED</span><span class="p">,</span>
<span class="s1">&#39;last_token_ids&#39;</span><span class="p">:</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;last_token_ids&#39;</span><span class="p">],</span>
<span class="s1">&#39;attention_mask&#39;</span><span class="p">:</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;attention_mask&#39;</span><span class="p">],</span>
<span class="s1">&#39;kv_cache_params&#39;</span><span class="p">:</span>
<span class="n">KeyValueCacheParams</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;past_key_value&#39;</span><span class="p">],</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;host_past_key_value_lengths&#39;</span><span class="p">],</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;host_max_attention_window_sizes&#39;</span><span class="p">],</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_sink_token_length&#39;</span><span class="p">],</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;kv_cache_block_offsets&#39;</span><span class="p">],</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;host_kv_cache_block_offsets&#39;</span><span class="p">],</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;host_kv_cache_pool_pointers&#39;</span><span class="p">],</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;host_kv_cache_pool_mapping&#39;</span><span class="p">],</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;cache_indirection&#39;</span><span class="p">],</span>
<span class="p">),</span>
<span class="s1">&#39;attention_params&#39;</span><span class="p">:</span>
<span class="n">AttentionParams</span><span class="p">(</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;sequence_length&#39;</span><span class="p">],</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;context_lengths&#39;</span><span class="p">],</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_context_lengths&#39;</span><span class="p">],</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">max_input_len</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_request_types&#39;</span><span class="p">],</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_runtime_perf_knobs&#39;</span><span class="p">],</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_context_progress&#39;</span><span class="p">],</span>
<span class="p">)</span>
<span class="p">}</span>
<span class="k">if</span> <span class="n">prompt_embedding_table_size</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;prompt_embedding_table&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;prompt_embedding_table&#39;</span><span class="p">]</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;prompt_tasks&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;tasks&#39;</span><span class="p">]</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;prompt_vocab_size&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;prompt_vocab_size&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;hidden_states_input&#39;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;hidden_states&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;hidden_states_input&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">use_lora_plugin</span><span class="p">:</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;lora_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">LoraParams</span><span class="p">(</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;lora_ranks&#39;</span><span class="p">],</span>
<span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;lora_weights_pointers&#39;</span><span class="p">],</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_context_lengths&#39;</span><span class="p">],</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;host_request_types&#39;</span><span class="p">])</span>
<span class="k">if</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span>
<span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;mrope_params&#39;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">result</span><span class="p">[</span><span class="s1">&#39;mrope_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model_inputs</span><span class="p">[</span><span class="s1">&#39;mrope_params&#39;</span><span class="p">]</span>
<span class="k">return</span> <span class="n">result</span></div>
<div class="viewcode-block" id="PretrainedModel.quantize">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.PretrainedModel.quantize">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">quantize</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">hf_model_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">output_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">device</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;cuda&#39;</span><span class="p">,</span>
<span class="n">calib_dataset</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;cnn_dailymail&#39;</span><span class="p">,</span>
<span class="n">calib_batches</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span><span class="p">,</span>
<span class="n">calib_batch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">calib_max_seq_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span><span class="p">,</span>
<span class="n">random_seed</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1234</span><span class="p">,</span>
<span class="n">tokenizer_max_seq_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2048</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">,</span>
<span class="p">):</span>
<span class="n">config_cls</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="s1">&#39;config_class&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">config_cls</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2"> has not implemented corresponding config class, which is needed for correct config parsing.&quot;</span>
<span class="p">)</span>
<span class="n">config</span><span class="p">:</span> <span class="n">PretrainedConfig</span> <span class="o">=</span> <span class="n">config_cls</span><span class="o">.</span><span class="n">from_hugging_face</span><span class="p">(</span>
<span class="n">hf_model_dir</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">moe_ep_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="s2">&quot;Quantization for expert parallelism is not supported&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">_requires_modelopt_quantization</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The quant_config (</span><span class="si">{</span><span class="n">quant_config</span><span class="si">}</span><span class="s2">) should not call modelopt quantization&quot;</span>
<span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization</span><span class="w"> </span><span class="kn">import</span> <span class="n">quantize_and_export</span>
<span class="n">quantize_and_export</span><span class="p">(</span>
<span class="n">model_dir</span><span class="o">=</span><span class="nb">str</span><span class="p">(</span><span class="n">hf_model_dir</span><span class="p">),</span>
<span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span>
<span class="n">calib_dataset</span><span class="o">=</span><span class="n">calib_dataset</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">qformat</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">_get_modelopt_qformat</span><span class="p">(),</span>
<span class="n">kv_cache_dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">_get_modelopt_kv_cache_dtype</span><span class="p">(),</span>
<span class="n">calib_size</span><span class="o">=</span><span class="n">calib_batches</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">calib_batch_size</span><span class="p">,</span>
<span class="n">calib_max_seq_length</span><span class="o">=</span><span class="n">calib_max_seq_length</span><span class="p">,</span>
<span class="n">awq_block_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">group_size</span><span class="p">,</span>
<span class="n">output_dir</span><span class="o">=</span><span class="n">output_dir</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">pp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_size</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="n">seed</span><span class="o">=</span><span class="n">random_seed</span><span class="p">,</span>
<span class="n">tokenizer_max_seq_length</span><span class="o">=</span><span class="n">tokenizer_max_seq_length</span><span class="p">,</span>
<span class="p">)</span></div>
</div>
<span class="k">class</span><span class="w"> </span><span class="nc">DecoderModelForCausalLM</span><span class="p">(</span><span class="n">PretrainedModel</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">PretrainedConfig</span><span class="p">,</span> <span class="n">transformer</span><span class="p">,</span> <span class="n">lm_head</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformer</span> <span class="o">=</span> <span class="n">transformer</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lm_head</span> <span class="o">=</span> <span class="n">lm_head</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mup_width_multiplier</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;mup_width_multiplier&#39;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="c1"># Create constant attention parameters to be reused by all layers.</span>
<span class="n">Attention</span><span class="o">.</span><span class="n">create_attention_const_params</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">position_embedding_type</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">input_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">last_token_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_embedding_table</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_tasks</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_vocab_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">lora_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># fill attention params.</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">Attention</span><span class="o">.</span><span class="n">fill_attention_params</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">attention_params</span><span class="p">)</span>
<span class="c1"># split the sequence for context parallelism</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">input_ids</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="c1"># input shape is [-1]</span>
<span class="n">input_ids</span><span class="p">,</span> <span class="n">cp_join_index</span> <span class="o">=</span> <span class="n">cp_split_plugin</span><span class="p">(</span>
<span class="n">input_ids</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_rank</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="kc">False</span><span class="p">,</span> <span class="s2">&quot;Context parallelism with non-remove-padding is not supported yet.&quot;</span>
<span class="n">is_gemma_2_cg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">has_config_group</span><span class="p">(</span><span class="n">Gemma2ConfigGroup</span><span class="p">)</span>
<span class="n">is_gemma_3_cg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">has_config_group</span><span class="p">(</span><span class="n">Gemma3ConfigGroup</span><span class="p">)</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;input_ids&#39;</span><span class="p">:</span> <span class="n">input_ids</span><span class="p">,</span>
<span class="s1">&#39;position_ids&#39;</span><span class="p">:</span> <span class="n">position_ids</span><span class="p">,</span>
<span class="s1">&#39;use_cache&#39;</span><span class="p">:</span> <span class="n">use_cache</span><span class="p">,</span>
<span class="s1">&#39;attention_mask&#39;</span><span class="p">:</span> <span class="n">attention_mask</span><span class="p">,</span>
<span class="s1">&#39;kv_cache_params&#39;</span><span class="p">:</span> <span class="n">kv_cache_params</span><span class="p">,</span>
<span class="s1">&#39;attention_params&#39;</span><span class="p">:</span> <span class="n">attention_params</span><span class="p">,</span>
<span class="p">}</span>
<span class="k">if</span> <span class="n">lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;lora_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">lora_params</span>
<span class="k">if</span> <span class="n">hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;hidden_states&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="k">if</span> <span class="n">prompt_embedding_table</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;prompt_embedding_table&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">prompt_embedding_table</span>
<span class="k">if</span> <span class="n">prompt_tasks</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;prompt_tasks&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">prompt_tasks</span>
<span class="k">if</span> <span class="n">prompt_vocab_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;prompt_vocab_size&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">prompt_vocab_size</span>
<span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spec_decoding_params</span>
<span class="k">if</span> <span class="n">mrope_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;mrope_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">mrope_params</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">hidden_states</span><span class="p">,</span> <span class="n">presents</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="c1"># All gather and rebuild sequence after transformer layer for context parallelism</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">hidden_states</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span>
<span class="n">gather_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">view</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]])</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">cp_join_index</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="kc">False</span><span class="p">,</span> <span class="s2">&quot;Context parallelism with non-remove-padding is not supported yet.&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">all_hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">gather_last_token_logits</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">,</span> <span class="n">last_token_ids</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="c1"># [batch_size, hidden_size] -&gt; [batch_size, vocab_size]</span>
<span class="n">lm_logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lm_head</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;output_multiplier_scale&#39;</span><span class="p">):</span>
<span class="n">lm_logits</span> <span class="o">*=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;output_multiplier_scale&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mup_width_multiplier</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lm_logits</span> <span class="o">=</span> <span class="n">lm_logits</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">mup_width_multiplier</span>
<span class="k">if</span> <span class="n">is_gemma_2_cg</span> <span class="ow">or</span> <span class="n">is_gemma_3_cg</span><span class="p">:</span>
<span class="n">softcap</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">get_config_group</span><span class="p">(</span>
<span class="n">Gemma2ConfigGroup</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">is_gemma_3_cg</span> <span class="k">else</span>
<span class="n">Gemma3ConfigGroup</span><span class="p">)</span><span class="o">.</span><span class="n">final_logit_softcapping</span>
<span class="k">if</span> <span class="n">softcap</span><span class="p">:</span>
<span class="n">lm_logits</span> <span class="o">=</span> <span class="n">lm_logits</span> <span class="o">*</span> <span class="nb">float</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="n">softcap</span><span class="p">)</span>
<span class="n">lm_logits</span> <span class="o">=</span> <span class="n">tanh</span><span class="p">(</span><span class="n">lm_logits</span><span class="p">)</span> <span class="o">*</span> <span class="nb">float</span><span class="p">(</span><span class="n">softcap</span><span class="p">)</span>
<span class="n">lm_logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;logits&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">hidden_states</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;hidden_states_output&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">present</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_layers</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">),</span> <span class="n">presents</span><span class="p">):</span>
<span class="n">present</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;present_key_value_</span><span class="si">{</span><span class="n">i</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">kv_dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="k">return</span> <span class="p">(</span><span class="n">lm_logits</span><span class="p">,</span> <span class="n">presents</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">)</span>
<span class="k">return</span> <span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">presents</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="k">return</span> <span class="n">lm_logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">all_hidden_states</span>
<span class="k">return</span> <span class="n">hidden_states</span>
<span class="k">def</span><span class="w"> </span><span class="nf">fuse_gate_mlp</span><span class="p">(</span>
<span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">,</span>
<span class="n">gemm_swiglu_plugin_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">low_latency_gemm_swiglu_plugin_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.quantize</span><span class="w"> </span><span class="kn">import</span> <span class="n">fp8_quantize</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">mlp</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mlp</span><span class="p">,</span> <span class="n">GatedMLP</span><span class="p">):</span>
<span class="n">init_params</span> <span class="o">=</span> <span class="n">get_init_params</span><span class="p">(</span><span class="n">mlp</span><span class="p">)</span>
<span class="n">hidden_act</span> <span class="o">=</span> <span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;hidden_act&quot;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">hidden_act</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;silu&quot;</span><span class="p">,</span> <span class="s2">&quot;gelu&quot;</span><span class="p">]:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;fuse_gate_mlp cannot be done for </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> due to unsupported activation </span><span class="si">{</span><span class="n">hidden_act</span><span class="si">}</span><span class="s2">. Skipping.&quot;</span>
<span class="p">)</span>
<span class="k">continue</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;inner_layernorm&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">fused_layer</span> <span class="o">=</span> <span class="n">FusedGatedMLP</span><span class="p">(</span><span class="o">**</span><span class="n">init_params</span><span class="p">)</span>
<span class="n">fc_name</span> <span class="o">=</span> <span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;.fc&#39;</span>
<span class="n">layer_quant_cfg</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">_get_quant_cfg</span><span class="p">(</span><span class="n">fc_name</span><span class="p">)</span>
<span class="n">layer_quant_algo</span> <span class="o">=</span> <span class="n">layer_quant_cfg</span><span class="o">.</span><span class="n">quant_algo</span>
<span class="k">if</span> <span class="n">layer_quant_algo</span> <span class="o">!=</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span> <span class="ow">and</span> <span class="n">layer_quant_algo</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">exclude_modules</span><span class="p">,</span> <span class="nb">list</span><span class="p">)</span> \
<span class="ow">and</span> <span class="n">fc_name</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">exclude_modules</span><span class="p">:</span>
<span class="n">layer_quant_algo</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">layer_quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span>
<span class="n">fused_layer</span> <span class="o">=</span> <span class="n">fp8_quantize</span><span class="p">(</span><span class="n">fused_layer</span><span class="p">,</span> <span class="n">layer_quant_cfg</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">str_dtype_to_torch</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">trt_dtype_to_torch</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">gate_weight</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="n">fc_weight</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span><span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">gate_weight</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">fc_weight</span><span class="o">.</span><span class="n">dtype</span>
<span class="n">need_qdq</span> <span class="o">=</span> <span class="n">gate_weight</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span>
<span class="n">gate_weight</span> <span class="o">=</span> <span class="n">gate_weight</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">fc_weight</span> <span class="o">=</span> <span class="n">fc_weight</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># dequantize if needed</span>
<span class="k">if</span> <span class="n">need_qdq</span><span class="p">:</span>
<span class="n">gate_weight</span> <span class="o">=</span> <span class="n">gate_weight</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span> <span class="o">*</span> <span class="n">numpy_to_torch</span><span class="p">(</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="n">fc_weight</span> <span class="o">=</span> <span class="n">fc_weight</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span> <span class="o">*</span> <span class="n">numpy_to_torch</span><span class="p">(</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="c1"># concat</span>
<span class="n">fused_weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">gate_weight</span><span class="p">,</span> <span class="n">fc_weight</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">fused_weight_scaling_factor</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span>
<span class="nb">max</span><span class="p">(</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">))</span>
<span class="c1"># quantize if needed</span>
<span class="k">if</span> <span class="n">need_qdq</span><span class="p">:</span>
<span class="n">fused_weight</span> <span class="o">=</span> <span class="p">(</span><span class="n">fused_weight</span> <span class="o">/</span>
<span class="n">fused_weight_scaling_factor</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span><span class="p">)</span>
<span class="k">if</span> <span class="n">gemm_swiglu_plugin_dtype</span> <span class="o">==</span> <span class="s1">&#39;fp8&#39;</span> <span class="ow">or</span> <span class="n">low_latency_gemm_swiglu_plugin_dtype</span> <span class="o">==</span> <span class="s1">&#39;fp8&#39;</span><span class="p">:</span>
<span class="c1"># gemm_swiglu_plugin needs (k, n) weights</span>
<span class="c1"># but weights should still be k-major for fp8</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">in_features</span><span class="p">,</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">out_features</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;fp8&#39;</span><span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">fused_weight</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">in_features</span><span class="p">,</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">out_features</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">fused_weight</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">fused_weight_scaling_factor</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">mlp</span><span class="o">.</span><span class="n">bias</span><span class="p">:</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span><span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span> <span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">layer_quant_algo</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">mlp</span><span class="o">.</span><span class="n">bias</span><span class="p">:</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span><span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span> <span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Unsupported quant algo: </span><span class="si">{</span><span class="n">layer_quant_algo</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">proj</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">proj</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">inner_layernorm</span>
<span class="n">_</span><span class="p">,</span> <span class="n">mlp_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">mlp_name</span><span class="p">,</span> <span class="n">fused_layer</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mlp</span><span class="p">,</span> <span class="n">Fp8RowwiseGatedMLP</span><span class="p">):</span>
<span class="n">init_params</span> <span class="o">=</span> <span class="n">get_init_params</span><span class="p">(</span><span class="n">mlp</span><span class="p">)</span>
<span class="n">hidden_act</span> <span class="o">=</span> <span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;hidden_act&quot;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">hidden_act</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;silu&quot;</span><span class="p">,</span> <span class="s2">&quot;gelu&quot;</span><span class="p">]:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;fuse_gate_mlp cannot be done for </span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s2"> due to unsupported activation </span><span class="si">{</span><span class="n">hidden_act</span><span class="si">}</span><span class="s2">. Skipping.&quot;</span>
<span class="p">)</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="n">mlp</span><span class="o">.</span><span class="n">clamp_val</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;clamp_val&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">clamp_val</span><span class="o">.</span><span class="n">raw_value</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">fused_layer</span> <span class="o">=</span> <span class="n">Fp8RowwiseFusedGatedMLP</span><span class="p">(</span><span class="o">**</span><span class="n">init_params</span><span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">per_channel_scale</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">per_channel_scale</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">per_channel_scale</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">mlp</span><span class="o">.</span><span class="n">bias</span><span class="p">:</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">fused_fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span><span class="n">mlp</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span> <span class="n">mlp</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">proj</span> <span class="o">=</span> <span class="n">mlp</span><span class="o">.</span><span class="n">proj</span>
<span class="n">_</span><span class="p">,</span> <span class="n">mlp_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">mlp_name</span><span class="p">,</span> <span class="n">fused_layer</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">unfuse_qkv_gemm</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Split all the models&#39; Attention layer&#39;s QKV GEMM into 3 GEMMs layer.q layer.k, layer.v and return the changed model</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.quantize</span><span class="w"> </span><span class="kn">import</span> <span class="n">quantize</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">Attention</span><span class="p">)</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">layer</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">&quot;unfuse_qkv_gemm requires tp_size == 1&quot;</span>
<span class="k">if</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">continue</span>
<span class="n">qkv_params</span> <span class="o">=</span> <span class="n">get_init_params</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="p">,</span> <span class="n">ColumnLinear</span><span class="p">)</span>
<span class="n">qkv_params</span><span class="p">[</span><span class="s2">&quot;bias&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">qkv_params</span><span class="p">[</span><span class="s2">&quot;bias&quot;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">qkv_params</span><span class="p">[</span><span class="s2">&quot;strict_dtype&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">qkv_params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;strict_dtype&quot;</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">q</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="o">**</span><span class="p">{</span>
<span class="o">**</span><span class="n">qkv_params</span><span class="p">,</span>
<span class="s2">&quot;out_features&quot;</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="o">**</span><span class="p">{</span>
<span class="o">**</span><span class="n">qkv_params</span><span class="p">,</span>
<span class="s2">&quot;out_features&quot;</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="o">**</span><span class="p">{</span>
<span class="o">**</span><span class="n">qkv_params</span><span class="p">,</span>
<span class="s2">&quot;out_features&quot;</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">layer_quant_cfg</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">_get_quant_cfg</span><span class="p">(</span><span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;.qkv&#39;</span><span class="p">)</span>
<span class="n">q</span> <span class="o">=</span> <span class="n">quantize</span><span class="p">(</span><span class="n">q</span><span class="p">,</span> <span class="n">layer_quant_cfg</span><span class="p">)</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">quantize</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">layer_quant_cfg</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">quantize</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">layer_quant_cfg</span><span class="p">)</span>
<span class="n">out_features</span> <span class="o">=</span> <span class="n">q</span><span class="o">.</span><span class="n">out_features</span> <span class="o">+</span> <span class="n">k</span><span class="o">.</span><span class="n">out_features</span> <span class="o">+</span> <span class="n">v</span><span class="o">.</span><span class="n">out_features</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="p">,</span> <span class="p">(</span>
<span class="n">WeightOnlyQuantLinear</span><span class="p">,</span>
<span class="n">WeightOnlyQuantRowLinear</span><span class="p">,</span>
<span class="n">WeightOnlyGroupwiseQuantLinear</span><span class="p">,</span>
<span class="n">WeightOnlyGroupwiseQuantRowLinear</span><span class="p">,</span>
<span class="p">)):</span>
<span class="n">out_dim</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">out_dim</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">is_inited</span><span class="p">():</span>
<span class="n">qkv_weight</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">qkv_weight</span><span class="p">,</span> <span class="p">[</span>
<span class="n">qkv_weight</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">out_dim</span><span class="p">]</span> <span class="o">*</span> <span class="n">q</span><span class="o">.</span><span class="n">out_features</span> <span class="o">//</span> <span class="n">out_features</span><span class="p">,</span>
<span class="n">qkv_weight</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">out_dim</span><span class="p">]</span> <span class="o">*</span>
<span class="p">(</span><span class="n">q</span><span class="o">.</span><span class="n">out_features</span> <span class="o">+</span> <span class="n">k</span><span class="o">.</span><span class="n">out_features</span><span class="p">)</span> <span class="o">//</span> <span class="n">out_features</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="n">out_dim</span><span class="p">)</span>
<span class="k">for</span> <span class="n">gemm</span><span class="p">,</span> <span class="n">weight</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">],</span> <span class="n">weights</span><span class="p">):</span>
<span class="n">gemm</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">weight</span>
<span class="k">if</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">is_inited</span><span class="p">():</span>
<span class="n">qkv_bias</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">biases</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">qkv_bias</span><span class="p">,</span> <span class="p">[</span>
<span class="n">qkv_bias</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">out_dim</span><span class="p">]</span> <span class="o">*</span> <span class="n">q</span><span class="o">.</span><span class="n">out_features</span> <span class="o">//</span> <span class="n">out_features</span><span class="p">,</span>
<span class="n">qkv_bias</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="n">out_dim</span><span class="p">]</span> <span class="o">*</span>
<span class="p">(</span><span class="n">q</span><span class="o">.</span><span class="n">out_features</span> <span class="o">+</span> <span class="n">k</span><span class="o">.</span><span class="n">out_features</span><span class="p">)</span> <span class="o">//</span> <span class="n">out_features</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="n">out_dim</span><span class="p">)</span>
<span class="k">for</span> <span class="n">gemm</span><span class="p">,</span> <span class="n">bias</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">([</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">],</span> <span class="n">biases</span><span class="p">):</span>
<span class="n">gemm</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">bias</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">parameter</span> <span class="ow">in</span> <span class="n">layer</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">_parameters</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="s2">&quot;bias&quot;</span><span class="p">]:</span>
<span class="k">for</span> <span class="n">gemm</span> <span class="ow">in</span> <span class="p">[</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">]:</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">gemm</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">parameter</span><span class="p">)</span>
<span class="n">layer</span><span class="o">.</span><span class="n">q</span> <span class="o">=</span> <span class="n">q</span>
<span class="n">layer</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">k</span>
<span class="n">layer</span><span class="o">.</span><span class="n">v</span> <span class="o">=</span> <span class="n">v</span>
<span class="n">layer</span><span class="o">.</span><span class="n">qkv</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">fuse_rg_lru</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">rg_lru</span><span class="p">,</span> <span class="n">parent</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">rg_lru</span><span class="p">,</span> <span class="n">RgLru</span><span class="p">):</span>
<span class="n">fused_layer</span> <span class="o">=</span> <span class="n">FusedRgLru</span><span class="p">(</span><span class="o">**</span><span class="n">get_init_params</span><span class="p">(</span><span class="n">rg_lru</span><span class="p">))</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">rg_lru</span><span class="o">.</span><span class="n">input_gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">rg_lru</span><span class="o">.</span><span class="n">recurrent_gate</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span>
<span class="p">[</span>
<span class="n">rg_lru</span><span class="o">.</span><span class="n">input_gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="n">rg_lru</span><span class="o">.</span><span class="n">recurrent_gate</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="p">,</span>
<span class="p">],</span>
<span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">fused_layer</span><span class="o">.</span><span class="n">recurrent_param</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">rg_lru</span><span class="o">.</span><span class="n">recurrent_param</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">rg_lru_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">parent</span><span class="p">,</span> <span class="n">rg_lru_name</span><span class="p">,</span> <span class="n">fused_layer</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">set_prompt_tuning</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Replace the given models embedding layer with a PromptTuningEmbedding layer in-place, return the changed model</span>
<span class="sd"> Pre-conditions: vocab_embedding exists</span>
<span class="sd"> Post-conditions: isinstance(vocab_embedding, PromptTuningEmbedding)</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span> <span class="n">parent</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="n">layer_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">if</span> <span class="n">layer_name</span> <span class="o">==</span> <span class="s2">&quot;vocab_embedding&quot;</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">embedding</span><span class="p">,</span> <span class="n">Embedding</span><span class="p">):</span>
<span class="n">ptuning_embedding</span> <span class="o">=</span> <span class="n">PromptTuningEmbedding</span><span class="p">(</span>
<span class="o">**</span><span class="n">get_init_params</span><span class="p">(</span><span class="n">embedding</span><span class="p">))</span>
<span class="n">ptuning_embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">parent</span><span class="o">.</span><span class="n">vocab_embedding</span> <span class="o">=</span> <span class="n">ptuning_embedding</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">add_lora</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">,</span>
<span class="n">max_lora_rank</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span>
<span class="n">with_dora</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39; Add lora layers to the Attention/BertAttention/Linear/RowLinear/FusedGatedMLP layers to the given model, return the changed model</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules</span><span class="p">():</span>
<span class="n">max_rank</span> <span class="o">=</span> <span class="n">max_lora_rank</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="p">(</span><span class="n">Attention</span><span class="p">,</span> <span class="n">BertAttention</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">max_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">max_rank</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span>
<span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="n">layer</span><span class="o">.</span><span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">Lora</span><span class="p">(</span>
<span class="n">in_hidden_size</span><span class="o">=</span><span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">],</span>
<span class="n">max_low_rank</span><span class="o">=</span><span class="n">max_rank</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">with_dora</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="o">=</span> <span class="n">Dora</span><span class="p">(</span><span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">layer</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">],</span> <span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="p">(</span><span class="n">Linear</span><span class="p">,</span> <span class="n">RowLinear</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">max_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">max_rank</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">in_features</span><span class="p">,</span> <span class="n">layer</span><span class="o">.</span><span class="n">out_features</span><span class="p">)</span>
<span class="n">layer</span><span class="o">.</span><span class="n">lora</span> <span class="o">=</span> <span class="n">Lora</span><span class="p">(</span>
<span class="n">in_hidden_size</span><span class="o">=</span><span class="n">layer</span><span class="o">.</span><span class="n">in_features</span><span class="p">,</span>
<span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span><span class="n">layer</span><span class="o">.</span><span class="n">out_features</span><span class="p">],</span>
<span class="n">max_low_rank</span><span class="o">=</span><span class="n">max_rank</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">with_dora</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">dora</span> <span class="o">=</span> <span class="n">Dora</span><span class="p">(</span><span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span><span class="n">layer</span><span class="o">.</span><span class="n">out_features</span><span class="p">])</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="p">(</span><span class="n">MLP</span><span class="p">,</span> <span class="n">FusedGatedMLP</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">max_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">max_rank</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="n">layer</span><span class="o">.</span><span class="n">lora</span> <span class="o">=</span> <span class="n">Lora</span><span class="p">(</span>
<span class="n">in_hidden_size</span><span class="o">=</span><span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span>
<span class="p">],</span>
<span class="n">max_low_rank</span><span class="o">=</span><span class="n">max_rank</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">FusedGatedMLP</span><span class="p">):</span>
<span class="n">layer</span><span class="o">.</span><span class="n">fused_gate_up_lora</span> <span class="o">=</span> <span class="n">Lora</span><span class="p">(</span>
<span class="n">in_hidden_size</span><span class="o">=</span><span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span>
<span class="p">],</span>
<span class="n">max_low_rank</span><span class="o">=</span><span class="n">max_rank</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">with_dora</span><span class="p">:</span>
<span class="n">layer</span><span class="o">.</span><span class="n">dora</span> <span class="o">=</span> <span class="n">Dora</span><span class="p">(</span><span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span>
<span class="p">],</span> <span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">FusedGatedMLP</span><span class="p">):</span>
<span class="n">layer</span><span class="o">.</span><span class="n">fused_gate_up_dora</span> <span class="o">=</span> <span class="n">Dora</span><span class="p">(</span><span class="n">out_hidden_sizes</span><span class="o">=</span><span class="p">[</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span>
<span class="p">],</span> <span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">MOE</span><span class="p">):</span>
<span class="k">if</span> <span class="n">max_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">max_rank</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">layer</span><span class="o">.</span><span class="n">ffn_hidden_size</span> <span class="o">//</span> <span class="n">layer</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="n">layer</span><span class="o">.</span><span class="n">max_low_rank</span> <span class="o">=</span> <span class="n">max_rank</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">to_ootb_moe</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39; Use OOTB MoE instead of MoE plugin, return the changed model</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span><span class="p">,</span> <span class="n">parent</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">MOE</span><span class="p">):</span>
<span class="n">layer_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">ootb_layer</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">MoeOOTB</span><span class="p">,</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">quantization</span><span class="p">)</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">parent</span><span class="p">,</span> <span class="n">layer_name</span><span class="p">,</span> <span class="n">ootb_layer</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">parallelize_embedding</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span> <span class="n">parent</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="n">layer_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">embedding</span><span class="p">,</span> <span class="n">Embedding</span><span class="p">)</span> <span class="ow">and</span> <span class="n">embedding</span><span class="o">.</span><span class="n">tp_group</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">init_params</span> <span class="o">=</span> <span class="n">get_init_params</span><span class="p">(</span><span class="n">embedding</span><span class="p">)</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;tp_group&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;tp_size&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;tp_rank&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="n">init_params</span><span class="p">[</span><span class="s2">&quot;sharding_dim&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">embedding_sharding_dim</span>
<span class="n">new_embedding</span> <span class="o">=</span> <span class="n">embedding</span><span class="o">.</span><span class="vm">__class__</span><span class="p">(</span><span class="o">**</span><span class="n">init_params</span><span class="p">)</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">parent</span><span class="p">,</span> <span class="n">layer_name</span><span class="p">,</span> <span class="n">new_embedding</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">share_embedding</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="n">lm_head</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">vocab_embedding</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules</span><span class="p">():</span>
<span class="n">layer_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">if</span> <span class="n">layer_name</span> <span class="o">==</span> <span class="s2">&quot;lm_head&quot;</span><span class="p">:</span>
<span class="n">lm_head</span> <span class="o">=</span> <span class="n">layer</span>
<span class="k">if</span> <span class="n">layer_name</span> <span class="o">==</span> <span class="s2">&quot;vocab_embedding&quot;</span><span class="p">:</span>
<span class="n">vocab_embedding</span> <span class="o">=</span> <span class="n">layer</span>
<span class="k">if</span> <span class="n">lm_head</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">vocab_embedding</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">break</span>
<span class="c1"># Cannot find either lm_head or vocab_embedding, e.g., pipeline parallel</span>
<span class="k">if</span> <span class="n">lm_head</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">vocab_embedding</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">model</span>
<span class="c1"># lm_head and vocab_embedding have different shapes, e.g., tensor parallel without embedding parallel</span>
<span class="k">if</span> <span class="n">lm_head</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">shape</span> <span class="o">!=</span> <span class="n">vocab_embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">shape</span><span class="p">:</span>
<span class="k">return</span> <span class="n">model</span>
<span class="c1"># lm_head can have a different type if quantized</span>
<span class="k">if</span> <span class="n">lm_head</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">dtype</span> <span class="o">!=</span> <span class="n">vocab_embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">dtype</span><span class="p">:</span>
<span class="k">return</span> <span class="n">model</span>
<span class="c1"># Don&#39;t assume weight can be shared if vocab_embedding is not initialized, e.g., dummy weights</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">vocab_embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">is_inited</span><span class="p">():</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">if</span> <span class="n">lm_head</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">is_inited</span><span class="p">():</span>
<span class="n">lm_head_weight</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span><span class="n">lm_head</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="n">vocab_embed_weight</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span><span class="n">vocab_embedding</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span><span class="p">)</span>
<span class="c1"># The lm_head and vocab_embedding have different weights</span>
<span class="k">if</span> <span class="p">(</span><span class="n">lm_head_weight</span> <span class="o">-</span> <span class="n">vocab_embed_weight</span><span class="p">)</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span> <span class="o">&gt;</span> <span class="mf">1e-6</span><span class="p">:</span>
<span class="k">return</span> <span class="n">model</span>
<span class="n">lm_head</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">vocab_embedding</span><span class="o">.</span><span class="n">weight</span>
<span class="k">if</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">lm_head</span><span class="p">,</span> <span class="s1">&#39;per_channel_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">vocab_embedding</span><span class="p">,</span> <span class="s1">&#39;per_channel_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">lm_head</span><span class="o">.</span><span class="n">per_channel_scale</span> <span class="o">=</span> <span class="n">vocab_embedding</span><span class="o">.</span><span class="n">per_token_scale</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">set_fp8_context_fhma</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">Attention</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="p">,</span> <span class="s1">&#39;activation_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">scale</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">]</span> <span class="o">/</span> <span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">value</span><span class="o">=</span><span class="n">scale</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">Attention</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="p">,</span> <span class="s1">&#39;activation_global_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">scale</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.0</span>
<span class="p">]</span> <span class="o">/</span> <span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="o">.</span><span class="n">activation_global_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">value</span><span class="o">=</span><span class="n">scale</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">set_fuse_fp4_quant</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">layer</span><span class="p">,</span> <span class="n">Attention</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="p">,</span> <span class="s1">&#39;activation_global_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">scale</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.0</span>
<span class="p">]</span> <span class="o">/</span> <span class="n">layer</span><span class="o">.</span><span class="n">dense</span><span class="o">.</span><span class="n">activation_global_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">layer</span><span class="o">.</span><span class="n">attention_output_sf_scale</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="n">scale</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">optimize_model</span><span class="p">(</span>
<span class="n">model</span><span class="p">:</span> <span class="n">PretrainedModel</span><span class="p">,</span>
<span class="n">use_parallel_embedding</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">share_embedding_table</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_ootb_moe</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_fused_mlp</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">gemm_swiglu_plugin_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">low_latency_gemm_swiglu_plugin_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">use_fused_rg_lru</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_unfused_qkv_gemm</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_prompt_tuning</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_lora</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">max_lora_rank</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">use_fp8_context_fmha</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">fuse_fp4_quant</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_optimize_cross_qkv</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">use_dora</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">PretrainedModel</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Run optimization passes on model.</span>
<span class="sd"> There are dependencies between some passes,</span>
<span class="sd"> so we always run passes in the order of arguments to guarantee the execution order.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># before weight loading</span>
<span class="k">if</span> <span class="n">use_parallel_embedding</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">parallelize_embedding</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">share_embedding_table</span><span class="p">:</span>
<span class="c1"># if share_embedding_table is enabled, only one copy of the embedding table is store in converted ckpt</span>
<span class="c1"># this pass is required to make lm_head.weight and vocab_embedding.weight point to the same tensor</span>
<span class="c1"># however even if share_embedding_table is not enabled, trt would still only keep one copy of the table if the weights are identical</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">share_embedding</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="c1"># After weight loading</span>
<span class="k">if</span> <span class="n">use_ootb_moe</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">to_ootb_moe</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_fused_mlp</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">fuse_gate_mlp</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">gemm_swiglu_plugin_dtype</span><span class="p">,</span>
<span class="n">low_latency_gemm_swiglu_plugin_dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_fused_rg_lru</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">fuse_rg_lru</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_unfused_qkv_gemm</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">unfuse_qkv_gemm</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_prompt_tuning</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">set_prompt_tuning</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_lora</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">add_lora</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">max_lora_rank</span><span class="p">,</span> <span class="n">with_dora</span><span class="o">=</span><span class="n">use_dora</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_fp8_context_fmha</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">set_fp8_context_fhma</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="n">fuse_fp4_quant</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">set_fuse_fp4_quant</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_lora</span> <span class="ow">and</span> <span class="n">use_optimize_cross_qkv</span> <span class="ow">is</span> <span class="kc">True</span><span class="p">:</span>
<span class="c1"># This optimization is not supported when we use lora</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">optimize_cross_qkv</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">optimize_cross_qkv</span><span class="p">(</span><span class="n">model</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> For cross attention layer, we can skip computing the query of encoder_output.</span>
<span class="sd"> So, add a new attribute &#39;kv&#39; in the cross_attention layer. This might lead to</span>
<span class="sd"> additional memory cost on model size, but save the memory usage on runtime.</span>
<span class="sd"> Currently, this function only detect the ColumnLinear and FP8Linear. It does not supports</span>
<span class="sd"> other quantization now.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">attn</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_modules_with_parent</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">attn</span><span class="p">,</span> <span class="n">Attention</span><span class="p">)</span> <span class="ow">and</span> <span class="n">attn</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> \
<span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">attn</span><span class="o">.</span><span class="n">qkv</span><span class="p">)</span> <span class="o">==</span> <span class="n">ColumnLinear</span> <span class="ow">or</span> <span class="nb">type</span><span class="p">(</span><span class="n">attn</span><span class="o">.</span><span class="n">qkv</span><span class="p">)</span> <span class="o">==</span> <span class="n">FP8Linear</span><span class="p">):</span>
<span class="n">old_qkv</span> <span class="o">=</span> <span class="n">attn</span><span class="o">.</span><span class="n">qkv</span>
<span class="n">linear_class</span> <span class="o">=</span> <span class="nb">type</span><span class="p">(</span><span class="n">old_qkv</span><span class="p">)</span>
<span class="n">new_kv</span> <span class="o">=</span> <span class="n">linear_class</span><span class="p">(</span>
<span class="n">in_features</span><span class="o">=</span><span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_features</span><span class="o">=</span><span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">gather_output</span><span class="p">,</span>
<span class="n">prefer_managed_weight</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">prefer_managed_weight</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">is_qkv</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">old_qkv_weight_value</span> <span class="o">=</span> <span class="n">old_qkv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">raw_value</span>
<span class="k">if</span> <span class="p">(</span><span class="n">old_qkv_weight_value</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span>
<span class="p">(</span><span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">)</span> <span class="o">*</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span> <span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="p">]))</span><span class="o">.</span><span class="n">all</span><span class="p">():</span>
<span class="n">q_weight</span><span class="p">,</span> <span class="n">kv_weight</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array_split</span><span class="p">(</span>
<span class="n">old_qkv_weight_value</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span>
<span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span> <span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">),</span>
<span class="p">[</span><span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">new_kv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">kv_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">([</span>
<span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="p">])</span>
<span class="k">elif</span> <span class="p">(</span><span class="n">old_qkv_weight_value</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">([</span>
<span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="p">(</span><span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">)</span> <span class="o">*</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span><span class="o">.</span><span class="n">all</span><span class="p">():</span>
<span class="n">q_weight</span><span class="p">,</span> <span class="n">kv_weight</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array_split</span><span class="p">(</span>
<span class="n">old_qkv_weight_value</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span>
<span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span> <span class="p">[</span><span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">new_kv</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">kv_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">([</span>
<span class="n">attn</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="kc">False</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">attn</span><span class="o">.</span><span class="n">qkv</span><span class="p">,</span> <span class="n">FP8Linear</span><span class="p">):</span>
<span class="n">new_kv</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">old_qkv</span><span class="o">.</span><span class="n">activation_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span>
<span class="n">new_kv</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">old_qkv</span><span class="o">.</span><span class="n">weights_scaling_factor</span><span class="o">.</span><span class="n">raw_value</span>
<span class="k">if</span> <span class="n">old_qkv</span><span class="o">.</span><span class="n">bias</span><span class="p">:</span>
<span class="n">q_bias</span><span class="p">,</span> <span class="n">kv_bias</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array_split</span><span class="p">(</span><span class="n">old_qkv</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">raw_value</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span> <span class="p">[</span><span class="n">attn</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">],</span>
<span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">new_kv</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">kv_bias</span><span class="o">.</span><span class="n">reshape</span><span class="p">([</span>
<span class="mi">2</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="n">attn</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="nb">setattr</span><span class="p">(</span><span class="n">attn</span><span class="p">,</span> <span class="s2">&quot;kv&quot;</span><span class="p">,</span> <span class="n">new_kv</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="k">def</span><span class="w"> </span><span class="nf">preprocess_perlayer_weights</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span>
<span class="n">model_config</span><span class="p">,</span>
<span class="n">quant_algo</span><span class="p">,</span>
<span class="n">from_pruned</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="n">exclude_modules</span> <span class="o">=</span> <span class="n">model_config</span><span class="o">.</span><span class="n">quantization</span><span class="o">.</span><span class="n">exclude_modules</span>
<span class="c1"># INT4_AWQ</span>
<span class="k">if</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span> <span class="ow">or</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">:</span>
<span class="n">preprocessor</span> <span class="o">=</span> <span class="n">preprocess_weights_for_mixed_gemm</span>
<span class="k">if</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span><span class="p">:</span>
<span class="n">activation_type</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span>
<span class="k">elif</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">:</span>
<span class="n">activation_type</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">from_pruned</span> <span class="ow">and</span> <span class="n">param</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">continue</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weight&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="n">param</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">int8</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="s2">&quot;bfloat16&quot;</span><span class="p">:</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bfloat16</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">preprocessor</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">),</span>
<span class="n">torch</span><span class="o">.</span><span class="n">quint4x2</span><span class="p">,</span>
<span class="n">activation_type</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span>
<span class="n">str_dtype_to_torch</span><span class="p">(</span><span class="n">model_config</span><span class="o">.</span><span class="n">dtype</span><span class="p">))</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;prequant_scaling_factor&#39;</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="c1"># MoE experts share the same scaling factor.</span>
<span class="n">param</span> <span class="o">=</span> <span class="n">param</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:]</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;attention.dense.bias&#39;</span><span class="p">)</span> <span class="ow">or</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span>
<span class="s1">&#39;mlp.proj.bias&#39;</span><span class="p">):</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">)</span>
<span class="k">if</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A8_AWQ</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">weights</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">activation_scaling_factor</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span>
<span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;activation_scaling_factor&#39;</span><span class="p">))</span>
<span class="n">weights_scaling_factor_2</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span>
<span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;weights_scaling_factor_2&#39;</span><span class="p">))</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">/=</span> <span class="n">weights_scaling_factor_2</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float16</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">str_dtype_to_torch</span><span class="p">(</span><span class="n">model_config</span><span class="o">.</span><span class="n">dtype</span><span class="p">))</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span>
<span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;prequant_scaling_factor&#39;</span><span class="p">)]</span> <span class="o">/=</span> <span class="n">activation_scaling_factor</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span>
<span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span> <span class="s1">&#39;alpha&#39;</span>
<span class="p">)]</span> <span class="o">=</span> <span class="n">activation_scaling_factor</span> <span class="o">*</span> <span class="n">weights_scaling_factor_2</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;activation_scaling_factor&#39;</span>
<span class="p">)]</span> <span class="o">=</span> <span class="n">activation_scaling_factor</span>
<span class="c1"># FP8</span>
<span class="k">elif</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weight&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="n">param</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">int8</span><span class="p">:</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span><span class="p">)</span>
<span class="c1"># lm_head is not always quantized to FP8</span>
<span class="k">if</span> <span class="s2">&quot;lm_head.weight&quot;</span> <span class="ow">in</span> <span class="n">weights</span> <span class="ow">and</span> <span class="n">weights</span><span class="p">[</span>
<span class="s1">&#39;lm_head.weight&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">dtype</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span><span class="p">:</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;lm_head.weights_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;lm_head.activation_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">FP8_PER_CHANNEL_PER_TOKEN</span><span class="p">:</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weight&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="n">param</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">int8</span><span class="p">:</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float8_e4m3fn</span><span class="p">)</span>
<span class="c1"># lm_head is not quantized to FP8</span>
<span class="k">if</span> <span class="s2">&quot;lm_head.weight&quot;</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">weights</span><span class="p">[</span><span class="s1">&#39;lm_head.weight&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">str_dtype_to_torch</span><span class="p">(</span>
<span class="n">model_config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;lm_head.weights_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;lm_head.activation_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># FP4</span>
<span class="k">elif</span> <span class="n">quant_algo</span> <span class="o">==</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">NVFP4</span><span class="p">:</span>
<span class="c1"># Interleave block scale for NVFP4 plugin.</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">weights</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">out_features</span><span class="p">,</span> <span class="n">in_features</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span>
<span class="n">nrows</span> <span class="o">=</span> <span class="n">fp4_utils</span><span class="o">.</span><span class="n">pad_up</span><span class="p">(</span><span class="n">out_features</span><span class="p">,</span> <span class="mi">128</span><span class="p">)</span>
<span class="n">ncols</span> <span class="o">=</span> <span class="n">fp4_utils</span><span class="o">.</span><span class="n">pad_up</span><span class="p">(</span><span class="n">in_features</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="n">new_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;weights_block_scaling_factor&#39;</span><span class="p">)</span>
<span class="n">weights</span><span class="p">[</span><span class="n">new_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="n">weights</span><span class="p">[</span>
<span class="n">new_name</span> <span class="o">+</span>
<span class="s2">&quot;_interleaved&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ops</span><span class="o">.</span><span class="n">trtllm</span><span class="o">.</span><span class="n">block_scale_interleave</span><span class="p">(</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">fp4_utils</span><span class="o">.</span><span class="n">float4_sf_dtype</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">())</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">nrows</span><span class="p">,</span> <span class="n">ncols</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">fp4_utils</span><span class="o">.</span><span class="n">float4_sf_dtype</span><span class="p">)</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor_2&#39;</span><span class="p">):</span>
<span class="n">new_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;weights_scaling_factor_2&#39;</span><span class="p">,</span>
<span class="s1">&#39;weights_global_scaling_factor&#39;</span><span class="p">)</span>
<span class="n">weights</span><span class="p">[</span><span class="n">new_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;activation_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">new_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;activation_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;activation_global_scaling_factor&#39;</span><span class="p">)</span>
<span class="n">weights</span><span class="p">[</span><span class="n">new_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="n">weights</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">weights</span><span class="p">):</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;weights_global_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">weight_global_sf</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="n">act_global_sf</span> <span class="o">=</span> <span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span>
<span class="s1">&#39;weights_global_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;activation_global_scaling_factor&#39;</span><span class="p">)]</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span>
<span class="s1">&#39;weights_global_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;alpha&#39;</span><span class="p">)]</span> <span class="o">=</span> <span class="n">act_global_sf</span> <span class="o">*</span> <span class="n">weight_global_sf</span>
<span class="k">elif</span> <span class="n">quant_algo</span> <span class="ow">in</span> <span class="p">[</span><span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16</span><span class="p">,</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W8A16</span><span class="p">]:</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">weight_only_quantize_dict</span><span class="p">(</span><span class="n">weights</span><span class="o">=</span><span class="n">weights</span><span class="p">,</span>
<span class="n">quant_algo</span><span class="o">=</span><span class="n">quant_algo</span><span class="p">,</span>
<span class="n">exclude_modules</span><span class="o">=</span><span class="n">exclude_modules</span><span class="p">,</span>
<span class="n">plugin</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">preprocess_weights</span><span class="p">(</span><span class="n">weights</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span>
<span class="n">model_config</span><span class="p">:</span> <span class="n">PretrainedConfig</span><span class="p">,</span>
<span class="n">from_pruned</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;This function in-place modifies weights and model_config, making them compatible with each other.</span>
<span class="sd"> Note: Typically, it should be called before model creation and weight loading. For example,</span>
<span class="sd"> preprocess_weights(weights, model_config)</span>
<span class="sd"> model = XXXForCausalLM(model_config)</span>
<span class="sd"> model.load(weights)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">quant_config</span> <span class="o">=</span> <span class="n">model_config</span><span class="o">.</span><span class="n">quantization</span>
<span class="n">quant_algo</span> <span class="o">=</span> <span class="n">quant_config</span><span class="o">.</span><span class="n">quant_algo</span>
<span class="n">pattern_info</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;fc&#39;</span><span class="p">,</span> <span class="s1">&#39;gate&#39;</span><span class="p">,</span> <span class="s1">&#39;proj&#39;</span><span class="p">,</span> <span class="s1">&#39;qkv&#39;</span><span class="p">,</span> <span class="s1">&#39;dense&#39;</span><span class="p">]</span>
<span class="k">def</span><span class="w"> </span><span class="nf">process_kv_scaling_factor</span><span class="p">(</span><span class="n">weights</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]):</span>
<span class="n">new_entries</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">names_to_delete</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="c1"># If k, v cache scaling factors are stored separately, combine them into kv cache scaling factor.</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;.k_cache_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">v_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;k_cache_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;v_cache_scaling_factor&#39;</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">v_name</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">v_name</span><span class="si">}</span><span class="s2"> not found&quot;</span>
<span class="n">kv_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;k_cache_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;kv_cache_scaling_factor&#39;</span><span class="p">)</span>
<span class="n">new_entries</span><span class="p">[</span><span class="n">kv_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">],</span> <span class="n">weights</span><span class="p">[</span><span class="n">v_name</span><span class="p">])</span>
<span class="n">names_to_delete</span><span class="o">.</span><span class="n">update</span><span class="p">([</span><span class="n">name</span><span class="p">,</span> <span class="n">v_name</span><span class="p">])</span>
<span class="n">weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">new_entries</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">names_to_delete</span><span class="p">:</span>
<span class="k">del</span> <span class="n">weights</span><span class="p">[</span><span class="n">k</span><span class="p">]</span>
<span class="n">new_entries</span> <span class="o">=</span> <span class="p">[]</span>
<span class="c1"># The unified converter generate_tllm_weights() already generates these rcp weights, but legacy</span>
<span class="c1"># converters do not. Handle it here.</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s1">&#39;.kv_cache_scaling_factor&#39;</span><span class="p">):</span>
<span class="n">rcp_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;kv_cache_scaling_factor&#39;</span><span class="p">,</span>
<span class="s1">&#39;kv_cache_rcp_scaling_factor&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rcp_name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="n">new_entries</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">rcp_name</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="n">param</span><span class="p">)))</span>
<span class="n">weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">new_entries</span><span class="p">)</span>
<span class="n">process_kv_scaling_factor</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="n">per_layer_weights</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">in_mode</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">for</span> <span class="n">info</span> <span class="ow">in</span> <span class="n">pattern_info</span><span class="p">:</span>
<span class="n">pattern</span> <span class="o">=</span> <span class="sa">rf</span><span class="s1">&#39;(.*?</span><span class="si">{</span><span class="n">info</span><span class="si">}</span><span class="s1">.*?)&#39;</span>
<span class="n">pattern_match</span> <span class="o">=</span> <span class="n">re</span><span class="o">.</span><span class="n">match</span><span class="p">(</span><span class="n">pattern</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span>
<span class="k">if</span> <span class="n">pattern_match</span><span class="p">:</span>
<span class="n">base_name</span> <span class="o">=</span> <span class="n">pattern_match</span><span class="o">.</span><span class="n">group</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">base_name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">per_layer_weights</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="n">per_layer_weights</span><span class="p">[</span><span class="n">base_name</span><span class="p">]</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">per_layer_weights</span><span class="p">[</span><span class="n">base_name</span><span class="p">][</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span>
<span class="n">in_mode</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">break</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">in_mode</span><span class="p">:</span>
<span class="c1"># [lm_head.weight, ln_f.weight, vocab_embedding.weight]</span>
<span class="n">base_name</span> <span class="o">=</span> <span class="n">name</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">base_name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">per_layer_weights</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="n">per_layer_weights</span><span class="p">[</span><span class="n">base_name</span><span class="p">]</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">per_layer_weights</span><span class="p">[</span><span class="n">base_name</span><span class="p">][</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">param</span>
<span class="n">new_weights</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">base_name</span><span class="p">,</span> <span class="n">layer_weights</span> <span class="ow">in</span> <span class="n">per_layer_weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">quant_algo</span> <span class="o">!=</span> <span class="n">QuantAlgo</span><span class="o">.</span><span class="n">MIXED_PRECISION</span><span class="p">:</span>
<span class="n">layer_quant_algo</span> <span class="o">=</span> <span class="n">quant_algo</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">quant_cfg</span> <span class="o">=</span> <span class="n">quant_config</span><span class="o">.</span><span class="n">_get_quant_cfg</span><span class="p">(</span><span class="n">base_name</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">quant_cfg</span><span class="o">.</span><span class="n">quant_algo</span><span class="p">:</span>
<span class="n">new_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">layer_weights</span><span class="p">)</span>
<span class="k">continue</span>
<span class="n">layer_quant_algo</span> <span class="o">=</span> <span class="n">quant_cfg</span><span class="o">.</span><span class="n">quant_algo</span>
<span class="n">preprocess_perlayer_weights</span><span class="p">(</span><span class="n">layer_weights</span><span class="p">,</span> <span class="n">model_config</span><span class="p">,</span>
<span class="n">layer_quant_algo</span><span class="p">,</span> <span class="n">from_pruned</span><span class="p">)</span>
<span class="n">new_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">layer_weights</span><span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">new_weights</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">weights</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s1">&#39;GPTJForCausalLM&#39;</span><span class="p">:</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">if</span> <span class="s1">&#39;attention.dense.bias&#39;</span> <span class="ow">in</span> <span class="n">name</span> <span class="ow">or</span> <span class="s1">&#39;mlp.proj.bias&#39;</span> <span class="ow">in</span> <span class="n">name</span><span class="p">:</span>
<span class="n">weights</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">)</span>
<span class="k">return</span> <span class="n">weights</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_kv_cache_type_from_legacy</span><span class="p">(</span><span class="n">use_cache</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="n">paged_kv_cache</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">KVCacheType</span><span class="p">:</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">if</span> <span class="n">paged_kv_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">PAGED</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">DISABLED</span>
<span class="k">def</span><span class="w"> </span><span class="nf">save_config</span><span class="p">(</span><span class="n">config</span><span class="p">:</span> <span class="n">PretrainedConfig</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="n">output_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">log</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">config_path</span> <span class="o">=</span> <span class="n">Path</span><span class="p">(</span><span class="n">output_dir</span><span class="p">)</span> <span class="o">/</span> <span class="s2">&quot;config.json&quot;</span>
<span class="k">if</span> <span class="n">log</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">debug</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Saving TensorRT LLM configuration to </span><span class="si">{</span><span class="n">config_path</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="n">config_path</span><span class="o">.</span><span class="n">parent</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">parents</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">config_path</span><span class="o">.</span><span class="n">write_text</span><span class="p">(</span><span class="n">json</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">to_dict</span><span class="p">(),</span> <span class="n">indent</span><span class="o">=</span><span class="mi">4</span><span class="p">))</span>
<span class="k">def</span><span class="w"> </span><span class="nf">save_checkpoint</span><span class="p">(</span><span class="o">*</span><span class="p">,</span> <span class="n">output_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">weights</span><span class="p">:</span> <span class="nb">dict</span><span class="p">,</span> <span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot; Checkpoint saver for weight loader.&quot;&quot;&quot;</span>
<span class="n">safetensors</span><span class="o">.</span><span class="n">torch</span><span class="o">.</span><span class="n">save_file</span><span class="p">(</span>
<span class="n">weights</span><span class="p">,</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">output_dir</span><span class="p">,</span> <span class="sa">f</span><span class="s1">&#39;rank</span><span class="si">{</span><span class="n">rank</span><span class="si">}</span><span class="s1">.safetensors&#39;</span><span class="p">))</span>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on November 05, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/3111682">3111682</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>