TensorRT-LLMs/reference/precision.html
2025-09-17 05:52:50 +00:00

1262 lines
62 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Numerical Precision &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=95073da6" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'reference/precision';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.1.0rc5';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.1.0rc5" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/quick-start-recipe-for-gpt-oss-on-trtllm.html">Quick Start Recipe for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/disagg-serving.html">Disaggregated Serving (Beta)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Numerical Precision</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="numerical-precision">
<span id="precision"></span><h1>Numerical Precision<a class="headerlink" href="#numerical-precision" title="Link to this heading">#</a></h1>
<p>This document describes the different quantization recipes implemented in TensorRT-LLM and contains a support matrix
for the different models.</p>
<section id="fp32-fp16-and-bf16">
<h2>FP32, FP16 and BF16<a class="headerlink" href="#fp32-fp16-and-bf16" title="Link to this heading">#</a></h2>
<p>The different models implemented in TensorRT-LLM work with 32-bit IEEE
floating-point (FP32) numbers. When checkpoints are available, the models also
support 16-bit IEEE floating-point numbers (FP16) and 16-bit Bfloat16 (BF16) as
described <a class="reference external" href="https://en.wikipedia.org/wiki/Bfloat16_floating-point_format">here</a>.</p>
</section>
<section id="quantization-and-dequantization-q-dq">
<h2>Quantization and Dequantization (Q/DQ)<a class="headerlink" href="#quantization-and-dequantization-q-dq" title="Link to this heading">#</a></h2>
<p>Given a floating-point number <code class="docutils literal notranslate"><span class="pre">x</span></code> and a floating-point scaling factor <code class="docutils literal notranslate"><span class="pre">s</span></code>,
TensorRT-LLM implements INT8 quantization as:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">q</span> <span class="o">=</span> <span class="n">int8</span><span class="o">.</span><span class="n">satfinite</span><span class="p">(</span><span class="n">x</span> <span class="o">*</span> <span class="n">s</span><span class="p">)</span>
</pre></div>
</div>
<p>Given an INT8 number <code class="docutils literal notranslate"><span class="pre">q</span></code> and a floating-point scaling factor <code class="docutils literal notranslate"><span class="pre">s</span></code>, TensorRT-LLM
implements INT8 dequantization to the floating-point (FP) type as:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">static_cast</span><span class="o">&lt;</span><span class="n">FP</span><span class="o">&gt;</span><span class="p">(</span><span class="n">q</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span>
</pre></div>
</div>
<p>Given a matrix (2D tensor) of shape <code class="docutils literal notranslate"><span class="pre">M</span> <span class="pre">x</span> <span class="pre">N</span></code> (<code class="docutils literal notranslate"><span class="pre">M</span></code> rows and <code class="docutils literal notranslate"><span class="pre">N</span></code> columns) where
<code class="docutils literal notranslate"><span class="pre">M</span></code> is the number of tokens and <code class="docutils literal notranslate"><span class="pre">N</span></code> is the number of channels. TensorRT-LLM has
the three following modes to quantize and dequantize the elements of the
tensor:</p>
<ul class="simple">
<li><p>Per-tensor: It uses a single scaling factor for all the elements,</p></li>
<li><p>Per-token: It uses a different scaling factor for each token. There are <code class="docutils literal notranslate"><span class="pre">M</span></code>
scaling factors in that case,</p></li>
<li><p>Per-channel: It uses a different scaling factor for each channel. There are
<code class="docutils literal notranslate"><span class="pre">N</span></code> scaling factors in that case.</p></li>
</ul>
<p>Note that per-token and per-channel scaling modes can be used together (i.e.
they are <em>not</em> mutually exclusive).</p>
<p>In pseudo-code, the quantization can be implemented as follows for the three
different modes:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Per-tensor scaling.</span>
<span class="k">for</span> <span class="n">mi</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">M</span><span class="p">):</span>
<span class="k">for</span> <span class="n">ni</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N</span><span class="p">):</span>
<span class="n">q</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">=</span> <span class="n">int8</span><span class="o">.</span><span class="n">satfinite</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">*</span> <span class="n">s</span><span class="p">)</span>
<span class="c1"># Per-token scaling.</span>
<span class="k">for</span> <span class="n">mi</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">M</span><span class="p">):</span>
<span class="k">for</span> <span class="n">ni</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N</span><span class="p">):</span>
<span class="n">q</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">=</span> <span class="n">int8</span><span class="o">.</span><span class="n">satfinite</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">*</span> <span class="n">s</span><span class="p">[</span><span class="n">mi</span><span class="p">])</span>
<span class="c1"># Per-channel scaling.</span>
<span class="k">for</span> <span class="n">mi</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">M</span><span class="p">):</span>
<span class="k">for</span> <span class="n">ni</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">N</span><span class="p">):</span>
<span class="n">q</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">=</span> <span class="n">int8</span><span class="o">.</span><span class="n">satfinite</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">mi</span><span class="p">][</span><span class="n">ni</span><span class="p">]</span> <span class="o">*</span> <span class="n">s</span><span class="p">[</span><span class="n">ni</span><span class="p">])</span>
</pre></div>
</div>
</section>
<section id="int8-smoothquant-w8a8">
<h2>INT8 SmoothQuant (W8A8)<a class="headerlink" href="#int8-smoothquant-w8a8" title="Link to this heading">#</a></h2>
<p>The SmoothQuant technique was introduced in
<a class="reference external" href="https://arxiv.org/abs/2211.10438">https://arxiv.org/abs/2211.10438</a>. It is a
method to run inference using INT8 for both activations and weights while
maintaining the accuracy of the network (on downstream tasks).</p>
<p>As explained in the research paper, preprocessing must be applied to the
weights of the model. TensorRT-LLM includes scripts to prepare the model to
run using the SmoothQuant method.</p>
<p>Examples of how to enable SmoothQuant for GPT, GPT-J and LLaMA can be found in
the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/quantization">examples/quantization</a> folder of that release.</p>
</section>
<section id="int4-and-int8-weight-only-w4a16-and-w8a16">
<h2>INT4 and INT8 Weight-Only (W4A16 and W8A16)<a class="headerlink" href="#int4-and-int8-weight-only-w4a16-and-w8a16" title="Link to this heading">#</a></h2>
<p>The INT4 and INT8 Weight-Only techniques consist in quantizing the weights of
a model and dequantizing those weights on-the-fly in linear layers (Matmuls).
The activations are encoded using floating-point values (FP16 or BF16).</p>
<p>To use INT4/INT8 Weight-Only methods, the user must determine the scaling
factors to use to quantize and dequantize the weights of the model.</p>
<p>This release includes examples for <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/models/core/gpt">GPT</a> and
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/models/core/llama">LLaMA</a>.</p>
</section>
<section id="gptq-and-awq-w4a16">
<h2>GPTQ and AWQ (W4A16)<a class="headerlink" href="#gptq-and-awq-w4a16" title="Link to this heading">#</a></h2>
<p>The GPTQ and AWQ techniques are presented in
<a class="reference external" href="https://arxiv.org/abs/2210.17323">https://arxiv.org/abs/2210.17323</a>
and
<a class="reference external" href="https://arxiv.org/abs/2306.00978">https://arxiv.org/abs/2306.00978</a>,
respectively. TensorRT-LLM supports per-group scaling factors and
zero-offsetting in linear layers to implement GPTQ and AWQ methods. See the
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/cpp/tensorrt_llm/plugins/weightOnlyGroupwiseQuantMatmulPlugin">WeightOnlyGroupwiseQuantMatmulPlugin</a>
plugin and the corresponding
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/tensorrt_llm/quantization/functional.py"><code class="docutils literal notranslate"><span class="pre">weight_only_groupwise_quant_matmul</span></code></a>
Python function, for details.</p>
<p>This release includes examples of applying GPTQ to <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/models/core/gpt">GPT-NeoX</a>
and <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/models/core/llama">LLaMA-v2</a>, as well as an example of using AWQ with
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/models/contrib/gptj">GPT-J</a>.</p>
</section>
<section id="fp8-hopper">
<h2>FP8 (Hopper)<a class="headerlink" href="#fp8-hopper" title="Link to this heading">#</a></h2>
<p>This release of TensorRT-LLM contains implementations of FP8 for GPT-NeMo,
GPT-J and LLaMA. Those examples can be found in
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/examples/quantization">examples/quantization</a>.</p>
</section>
<section id="nvfp4-blackwell">
<h2>NVFP4 (Blackwell)<a class="headerlink" href="#nvfp4-blackwell" title="Link to this heading">#</a></h2>
<p>LLama and Mixtral can run in NVFP4 datatype. Those examples can be found in Llama examples.</p>
</section>
<section id="support-matrix">
<h2>Support matrix<a class="headerlink" href="#support-matrix" title="Link to this heading">#</a></h2>
<p>This release of TensorRT-LLM contains the following examples:</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
<tr class="row-odd"><th class="head text-left"><p>Model</p></th>
<th class="head text-center"><p>FP32</p></th>
<th class="head text-center"><p>FP16</p></th>
<th class="head text-center"><p>BF16</p></th>
<th class="head text-center"><p>FP8</p></th>
<th class="head text-center"><p>NVFP4</p></th>
<th class="head text-center"><p>W8A8 SQ</p></th>
<th class="head text-center"><p>W8A16</p></th>
<th class="head text-center"><p>W4A16</p></th>
<th class="head text-center"><p>W4A16 AWQ</p></th>
<th class="head text-center"><p>W4A16 GPTQ</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td class="text-left"><p>Baichuan</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>BERT</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>BLIP-2</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>BLOOM</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>ChatGLM</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>ChatGLM-v2</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>ChatGLM-v3</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>DBRX</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>Falcon</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Flan-T5</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>Gemma</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>GPT</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>GPT-J</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>GPT-NeMo</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>GPT-NeoX</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>InternLM</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>InternLM2</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>LLaMA</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>LLaMA-v2</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Mamba</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>Mistral</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Mixtral</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>MPT</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>OPT</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>Phi</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Qwen</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>RecurrentGemma</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Replit Code</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>SantaCoder</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Skywork</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>StarCoder1</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>StarCoder2</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>T5</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>Whisper</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>BLIP2-OPT</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>BLIP2-T5</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>LLaVA</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-odd"><td class="text-left"><p>VILA</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
</tr>
<tr class="row-even"><td class="text-left"><p>Nougat</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>Y</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
<td class="text-center"><p>.</p></td>
</tr>
</tbody>
</table>
</div>
<p>Note: The vision component of multi-modal models(BLIP2-OPT/BLIP2-T5/LLaVA/VILA/Nougat) uses FP16 by default.
The language component decides which quantization methods are supported by a given multi-modal model.</p>
</section>
<section id="technical-detail-the-quantmode-flags">
<h2>Technical Detail: The <code class="docutils literal notranslate"><span class="pre">QuantMode</span></code> Flags<a class="headerlink" href="#technical-detail-the-quantmode-flags" title="Link to this heading">#</a></h2>
<p>The quantization method is controlled by the
<a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/HEAD/tensorrt_llm/quantization/mode.py"><code class="docutils literal notranslate"><span class="pre">QuantMode</span></code></a> flags. The different fields
are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">INT4_WEIGHTS</span></code>, the weights are quantized to 4 bits (W4A*),</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">INT8_WEIGHTS</span></code>, the weights are quantized to 8 bits (W8A*),</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">ACTIVATIONS</span></code>, the activations are quantized to 8 bits (W*A8),</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PER_CHANNEL</span></code>, the scaling factors are defined per channel,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PER_TOKEN</span></code>, the scaling factors are defined per token,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">PER_GROUP</span></code>, the scaling factors are defined per group.</p></li>
</ul>
<p>There are three additional flags to control TensorRT-LLM:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">INT8_KV_CACHE</span></code>, the K/V cache stores K and V using 8-bit integers,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">FP8_KV_CACHE</span></code>, the K/V cache stores K and V using 8-bit floating-point numbers,</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">FP8_QDQ</span></code>, TensorRT-LLM relies on automatic fusion of Q/DQ nodes in TensorRT.</p></li>
</ul>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#fp32-fp16-and-bf16">FP32, FP16 and BF16</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#quantization-and-dequantization-q-dq">Quantization and Dequantization (Q/DQ)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#int8-smoothquant-w8a8">INT8 SmoothQuant (W8A8)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#int4-and-int8-weight-only-w4a16-and-w8a16">INT4 and INT8 Weight-Only (W4A16 and W8A16)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#gptq-and-awq-w4a16">GPTQ and AWQ (W4A16)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#fp8-hopper">FP8 (Hopper)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#nvfp4-blackwell">NVFP4 (Blackwell)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#support-matrix">Support matrix</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#technical-detail-the-quantmode-flags">Technical Detail: The <code class="docutils literal notranslate"><span class="pre">QuantMode</span></code> Flags</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 15, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/0c9430e">0c9430e</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>