mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-04 10:11:47 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
172 lines
6.4 KiB
Python
172 lines
6.4 KiB
Python
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor
|
|
from ...layers import (Attention, AttentionMaskType, ColumnLinear, Embedding,
|
|
GatedMLP, RmsNorm)
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig)
|
|
|
|
|
|
class SkyworkDecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
hidden_size = config.hidden_size
|
|
dtype = config.dtype
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
mlp_hidden_size = config.mlp_hidden_size
|
|
hidden_act = config.hidden_act
|
|
position_embedding_type = config.position_embedding_type
|
|
rotary_base = config.rotary_base
|
|
quant_mode = config.quant_mode
|
|
|
|
rotary_scaling = None
|
|
if hasattr(config, "rotary_scaling"):
|
|
rotary_scaling = config.rotary_scaling
|
|
if rotary_scaling and rotary_scaling["type"] == "ntk":
|
|
rotary_base *= rotary_scaling["factor"]
|
|
rotary_scaling = None
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
self.attention = Attention(
|
|
hidden_size,
|
|
config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=False,
|
|
position_embedding_type=position_embedding_type,
|
|
rotary_embedding_base=rotary_base,
|
|
rotary_embedding_scaling=rotary_scaling,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
tp_rank=config.mapping.tp_rank,
|
|
quant_mode=quant_mode,
|
|
)
|
|
self.post_layernorm = RmsNorm(normalized_shape=hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
self.mlp = GatedMLP(
|
|
hidden_size=hidden_size,
|
|
ffn_hidden_size=mlp_hidden_size,
|
|
hidden_act=hidden_act,
|
|
dtype=dtype,
|
|
bias=False,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
hidden_states = residual + hidden_states
|
|
self.register_network_output("decoder_outputs", hidden_states)
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class SkyworkModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
mapping = config.mapping
|
|
self.vocab_embedding = Embedding(
|
|
num_embeddings=config.vocab_size,
|
|
embedding_dim=config.hidden_size,
|
|
dtype=config.dtype,
|
|
tp_size=mapping.tp_size if config.use_parallel_embedding else 1,
|
|
tp_group=mapping.tp_group
|
|
if config.use_parallel_embedding else None,
|
|
tp_rank=mapping.tp_rank,
|
|
sharding_dim=config.embedding_sharding_dim)
|
|
self.layers = DecoderLayerList(SkyworkDecoderLayer, config)
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
# TODO: Add Prompt Tuning support
|
|
hidden_states = self.vocab_embedding(input_ids)
|
|
hidden_states = self.layers(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return hidden_states, tuple(presents)
|
|
return hidden_states
|
|
|
|
|
|
class SkyworkForCausalLM(DecoderModelForCausalLM):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
mapping = config.mapping
|
|
transformer = SkyworkModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size, mapping.tp_size)
|
|
lm_head = ColumnLinear(
|
|
config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True,
|
|
)
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self):
|
|
self.config.set_if_not_exist('rope_theta', 10000)
|
|
self.config.set_if_not_exist('rotary_scaling', None)
|