TensorRT-LLMs/cpp/include/tensorrt_llm/batch_manager/microBatchScheduler.h
Kaiyu Xie 385626572d
Update TensorRT-LLM (#2502)
* Update TensorRT-LLM

---------

Co-authored-by: 岑灿 <yunyi.hyy@alibaba-inc.com>
2024-11-26 16:51:34 +08:00

89 lines
3.7 KiB
C++

/*
* Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "common.h"
#include "tensorrt_llm/batch_manager/llmRequest.h"
#include "tensorrt_llm/common/algorithm.h"
#include "tensorrt_llm/runtime/common.h"
namespace tensorrt_llm::batch_manager
{
namespace batch_scheduler
{
struct ContextChunkingConfig
{
ContextChunkingConfig() = default;
executor::ContextChunkingPolicy chunkingPolicy;
/// The minimum size, also known as the chunk unit size. It generally
/// needs to be equal to the size of the kv cache block or its integer
/// multiples (except for the last context chunk) to avoid fragmentation.
/// When set to null, it indicates that the context chunk is disabled.
tensorrt_llm::runtime::SizeType32 chunkUnitSize;
};
} // namespace batch_scheduler
/// @brief This scheduler takes into account the desired batch size and limits of the TRT engine to schedule requests.
class MicroBatchScheduler : Algorithm
{
public:
constexpr static auto name{"MicroBatchScheduler"};
using SizeType32 = tensorrt_llm::runtime::SizeType32;
using ContextChunkingPolicy = tensorrt_llm::executor::ContextChunkingPolicy;
explicit MicroBatchScheduler(std::optional<batch_scheduler::ContextChunkingConfig> ctxChunkConfig = std::nullopt,
std::optional<SizeType32> maxContextLength = std::nullopt,
LlmRequestState noScheduleUntilState = LlmRequestState::kCONTEXT_INIT,
LlmRequestState noScheduleAfterState = LlmRequestState::kGENERATION_COMPLETE);
std::tuple<RequestVector, RequestVector> operator()(RequestVector& activeRequests, ReqIdsSet const& inflightReqIds,
SizeType32 maxBatchSizeRuntime, std::optional<SizeType32> maxNumTokensRuntime) const;
static void setCtxRequestsChunkSize(RequestVector& contextsToBeChunked, ContextChunkingPolicy ctxChunkPolicy,
std::optional<SizeType32> ctxTokensCapacity, SizeType32 chunkUnitSize,
std::optional<SizeType32> const& maxContextLength);
private:
template <ContextChunkingPolicy tPolicy>
static void setCtxRequestsChunkSize(RequestVector& contextsToBeChunked, std::optional<SizeType32> ctxTokensCapacity,
SizeType32 chunkUnitSize, std::optional<SizeType32> const& maxContextLength);
/// After the chunk sizes have been determined, this function will discard
/// any draft tokens that don't fit.
static void fitDraftTokens(RequestVector& contextsToBeChunked, std::optional<SizeType32> ctxTokensCapacity,
SizeType32 chunkUnitSize, std::optional<SizeType32> const& maxContextLength);
/// The maximum length of the context. If the context exceeds this length,
/// it must be chunked, otherwise it cannot be processed. Therefore, it
/// needs to be set together with the chunk unit size to make sense.
/// When set to null, it indicates that context length is unlimited.
std::optional<SizeType32> mMaxContextLength;
std::optional<batch_scheduler::ContextChunkingConfig> mCtxChunkConfig;
/// The state until/after which the scheduler should not schedule requests
LlmRequestState mNoScheduleUntilState;
LlmRequestState mNoScheduleAfterState;
};
} // namespace tensorrt_llm::batch_manager