TensorRT-LLMs/tensorrt_llm/bench/benchmark/utils/asynchronous.py
Kaiyu Xie 385626572d
Update TensorRT-LLM (#2502)
* Update TensorRT-LLM

---------

Co-authored-by: 岑灿 <yunyi.hyy@alibaba-inc.com>
2024-11-26 16:51:34 +08:00

166 lines
6.7 KiB
Python

from __future__ import annotations
import asyncio
import time
from itertools import chain
from typing import List, Set
import tensorrt_llm.bindings.executor as trtllm
from tensorrt_llm import LLM
from tensorrt_llm.bench.dataclasses.configuration import RuntimeConfig
from tensorrt_llm.bench.dataclasses.general import InferenceRequest
from tensorrt_llm.bench.dataclasses.reporting import (NewRequestPerfItemTuple,
StatsKeeper,
report_statistics)
from tensorrt_llm.llmapi.llm import RequestOutput
from tensorrt_llm.llmapi.llm_utils import LlmArgs
from tensorrt_llm.llmapi.utils import SamplingParams
from tensorrt_llm.logger import logger
class LlmManager:
"""LLM Manager class for providing a high-level API for running benchmarks."""
def __init__(self, llm: LLM, outbox: asyncio.Queue[RequestOutput],
streaming) -> None:
self.llm = llm
self._inbox = asyncio.Queue()
self._outbox = outbox
self._stop = asyncio.Event()
self._running = asyncio.Event()
self._tasks: Set[asyncio.Task] = set()
self._backend_task = None
self.streaming = streaming
async def process_request(self, request: InferenceRequest,
sampling_params: SamplingParams):
# Set up sampling params with inference request
sampling_params.max_tokens = request.output_tokens
request_start_timestamp = time.perf_counter_ns()
time_on_first_token = None
# Schedule the request in the LLM API (asynchronously)
output: RequestOutput = self.llm.generate_async(
request.input_ids,
sampling_params=sampling_params,
streaming=self.streaming)
if self.streaming:
async for stream_output in output:
if time_on_first_token is None:
time_on_first_token = time.perf_counter_ns()
response = stream_output
else:
# Wait for the response to return to us.
response: RequestOutput = await output.aresult()
# Mark that the response returned. Construct a record to send to statistics.
tokens = list(chain(*[beam.token_ids for beam in response.outputs]))
response_end_timestamp = time.perf_counter_ns()
request_perf_item = NewRequestPerfItemTuple(request_start_timestamp,
response_end_timestamp,
response.request_id,
len(request.input_ids),
response.finished, False,
tokens, len(tokens),
time_on_first_token)
# Register the new request perf items in the outbound queue for statistics keeping
await self._outbox.put(request_perf_item)
async def worker(self) -> None:
while not self._stop.is_set():
request = await self._inbox.get()
task = asyncio.create_task(
self.process_request(request[0], request[1]))
self._tasks.add(task)
task.add_done_callback(self._tasks.discard)
def stop(self) -> None:
logger.info("Stopping LLM backend.")
self._stop.set()
logger.info(f"Cancelling all {len(self._tasks)} tasks to complete.")
for task in self._tasks:
task.cancel()
logger.info("All tasks cancelled.")
self._backend_task.cancel()
logger.info("LLM Backend stopped.")
@property
def busy(self) -> bool:
return bool(self._tasks)
def run(self) -> None:
self._backend_task = asyncio.create_task(self.worker())
async def enqueue(self, request: InferenceRequest,
sampling_params: SamplingParams) -> None:
await self._inbox.put((request, sampling_params))
async def enqueue_messages(backend: LlmManager,
requests: List[InferenceRequest],
sampling_params: SamplingParams,
submit_finished: asyncio.Event) -> None:
num_requests = 0
submit_start = time.perf_counter_ns()
for request in requests:
await backend.enqueue(request, sampling_params)
num_requests += 1
submit_time = (time.perf_counter_ns() - submit_start) * 1.0e-9
logger.info(
"Request submission complete. "
f"[count={num_requests}, time={submit_time:.4f}s, rate={num_requests / submit_time:.2f} req/s]"
)
submit_finished.set()
async def async_benchmark(runtime_config: RuntimeConfig,
requests: List[InferenceRequest],
streaming: bool) -> None:
outbox = asyncio.Queue()
sampling_params = SamplingParams(end_id=-1, pad_id=-1, beam_width=1)
statistics = StatsKeeper()
submit_finished = asyncio.Event()
try:
logger.info("Setting up throughput benchmark.")
llm_args = LlmArgs(
model=runtime_config.engine_dir,
skip_tokenizer_init=True,
pipeline_parallel_size=runtime_config.world_config.pp_size,
tensor_parallel_size=runtime_config.world_config.tp_size,
trust_remote_code=True,
scheduler_config=runtime_config.settings_config.
get_scheduler_config(),
kv_cache_config=runtime_config.settings_config.get_kvcache_config(),
decoding_config=runtime_config.decoding_config.get_decoding_config(
),
enable_chunked_prefill=True,
batching_type=trtllm.BatchingType.INFLIGHT,
enable_processes_for_single_gpu=True,
)
llm = LLM(**llm_args.to_dict())
backend = LlmManager(llm, outbox, streaming)
logger.info("Creating backend and request enqueue tasks.")
backend.run()
enqueue_task = asyncio.create_task(
enqueue_messages(backend, requests, sampling_params,
submit_finished))
logger.info("Starting benchmark...")
while not submit_finished.is_set() or backend.busy or not outbox.empty(
):
try:
item = await asyncio.wait_for(outbox.get(), timeout=1.0)
statistics.register_request_perf_item(item)
except asyncio.TimeoutError:
logger.debug("No items in queue. Continuing.")
logger.info("Benchmark complete.")
report_statistics(statistics, runtime_config, logger, streaming)
except asyncio.CancelledError:
enqueue_task.cancel()
finally:
backend.stop()
llm._shutdown()