mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
701 lines
28 KiB
Python
701 lines
28 KiB
Python
import asyncio
|
|
import hashlib
|
|
import io
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import threading
|
|
import traceback
|
|
import weakref
|
|
from dataclasses import dataclass, field
|
|
from functools import cache, wraps
|
|
from pathlib import Path
|
|
from queue import Queue
|
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
import filelock
|
|
import huggingface_hub
|
|
import torch
|
|
from huggingface_hub import snapshot_download
|
|
from tqdm.auto import tqdm
|
|
|
|
from tensorrt_llm.bindings import executor as tllme
|
|
from tensorrt_llm.logger import Singleton, logger
|
|
|
|
|
|
def print_traceback_on_error(func):
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
try:
|
|
return func(*args, **kwargs)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
raise e
|
|
|
|
return wrapper
|
|
|
|
|
|
@dataclass(slots=True, kw_only=True)
|
|
class SamplingParams:
|
|
"""
|
|
Sampling parameters for text generation.
|
|
|
|
Args:
|
|
end_id (int, optional): The end token id. Defaults to None.
|
|
pad_id (int, optional): The pad token id. Defaults to None.
|
|
max_tokens (int): The maximum number of tokens to generate. Defaults to 32.
|
|
max_new_tokens (int, optional): The maximum number of tokens to generate. This argument is being deprecated; please use max_tokens instead. Defaults to None.
|
|
bad (str, List[str], optional): A string or a list of strings that redirect the generation when they are generated, so that the bad strings are excluded from the returned output. Defaults to None.
|
|
bad_token_ids (List[int], optional): A list of token ids that redirect the generation when they are generated, so that the bad ids are excluded from the returned output. Defaults to None.
|
|
stop (str, List[str], optional): A string or a list of strings that stop the generation when they are generated. The returned output will not contain the stop strings unless include_stop_str_in_output is True. Defaults to None.
|
|
stop_token_ids (List[int], optional): A list of token ids that stop the generation when they are generated. Defaults to None.
|
|
include_stop_str_in_output (bool): Whether to include the stop strings in output text. Defaults to False.
|
|
embedding_bias (torch.Tensor, optional): The embedding bias tensor. Expected type is kFP32 and shape is [vocab_size]. Defaults to None.
|
|
external_draft_tokens_config (ExternalDraftTokensConfig, optional): The speculative decoding configuration. Defaults to None.
|
|
logits_post_processor_name (str, optional): The logits postprocessor name. Must correspond to one of the logits postprocessor name provided to the ExecutorConfig. Defaults to None.
|
|
|
|
n (int): Number of sequences to generate. Defaults to 1.
|
|
best_of (int, optional): Number of sequences to consider for best output. Defaults to None.
|
|
use_beam_search (bool): Whether to use beam search. Defaults to False.
|
|
|
|
beam_width (int): The beam width. Setting 1 disables beam search. This parameter will be deprecated from the LLM API in a future release. Please use n/best_of/use_beam_search instead. Defaults to 1.
|
|
num_return_sequences (int, optional): The number of sequences to return. If set to None, it defaults to the value of `beam_width`. The default is None. This parameter will be deprecated from the LLM API in a future release. Please use n/best_of/use_beam_search instead. Defaults to None.
|
|
|
|
top_k (int): Controls number of logits to sample from. Default is 0 (all logits).
|
|
top_p (float): Controls the top-P probability to sample from. Default is 0.f
|
|
top_p_min (float): Controls decay in the top-P algorithm. topPMin is lower-bound. Default is 1.e-6.
|
|
top_p_reset_ids (int): Controls decay in the top-P algorithm. Indicates where to reset the decay. Default is 1.
|
|
top_p_decay (float): Controls decay in the top-P algorithm. The decay value. Default is 1.f
|
|
seed (int): Controls the random seed used by the random number generator in sampling
|
|
random_seed (int): Controls the random seed used by the random number generator in sampling. This argument is being deprecated; please use seed instead.
|
|
temperature (float): Controls the modulation of logits when sampling new tokens. It can have values > 0.f. Default is 1.0f
|
|
min_tokens (int): Lower bound on the number of tokens to generate. Values < 1 have no effect. Default is 1.
|
|
min_length (int): Lower bound on the number of tokens to generate. Values < 1 have no effect. Default is 1. This argument is being deprecated; please use min_tokens instead.
|
|
beam_search_diversity_rate (float): Controls the diversity in beam search.
|
|
repetition_penalty (float): Used to penalize tokens based on how often they appear in the sequence. It can have any value > 0.f. Values < 1.f encourages repetition, values > 1.f discourages it. Default is 1.f
|
|
presence_penalty (float): Used to penalize tokens already present in the sequence (irrespective of the number of appearances). It can have any values. Values < 0.f encourage repetition, values > 0.f discourage it. Default is 0.f
|
|
frequency_penalty (float): Used to penalize tokens already present in the sequence (dependent on the number of appearances). It can have any values. Values < 0.f encourage repetition, values > 0.f discourage it. Default is 0.f
|
|
length_penalty (float): Controls how to penalize longer sequences in beam search. Default is 0.f
|
|
early_stopping (int): Controls whether the generation process finishes once beamWidth sentences are generated (ends with end_token)
|
|
no_repeat_ngram_size (int): Controls how many repeat ngram size are acceptable. Default is 1 << 30.
|
|
|
|
return_log_probs (bool): Controls if Result should contain log probabilities. Default is false.
|
|
return_context_logits (bool): Controls if Result should contain the context logits. Default is false.
|
|
return_generation_logits (bool): Controls if Result should contain the generation logits. Default is false.
|
|
exclude_input_from_output (bool): Controls if output tokens in Result should include the input tokens. Default is true.
|
|
return_encoder_output (bool): Controls if Result should contain encoder output hidden states (for encoder-only and encoder-decoder models). Default is false.
|
|
|
|
ignore_eos (bool): Whether to ignore the EOS token and continue generating tokens after the EOS token is generated. Defaults to False.
|
|
detokenize (bool): Whether to detokenize the output. Defaults to True.
|
|
add_special_tokens (bool): Whether to add special tokens to the prompt. Defaults to True.
|
|
truncate_prompt_tokens (int, optional): If set to an integer k, will use only the last k tokens from the prompt (i.e., left truncation). Defaults to None.
|
|
skip_special_tokens (bool): Whether to skip special tokens in the output. Defaults to True.
|
|
spaces_between_special_tokens (bool): Whether to add spaces between special tokens in the output. Defaults to True.
|
|
"""
|
|
# [TO DEVELOPER] This class provides an interface to LLMAPI users.
|
|
# Internally, it manages and dispatches fields to Python bindings of C++ objects, currently including:
|
|
# (1) all fields of tllme.SamplingConfig;
|
|
# (2) all fields of tllme.OutputConfig;
|
|
# (3) some fields of tllme.Request.
|
|
# If you changed the implementation of C++ objects and corresponding Python bindings, please update:
|
|
# (1) the fields and corresponding docstring of this class, and
|
|
# (2) the expected_fields defined in _get_xxx_config methods.
|
|
|
|
end_id: Optional[int] = None
|
|
pad_id: Optional[int] = None
|
|
max_tokens: int = 32
|
|
max_new_tokens: Optional[int] = None
|
|
|
|
bad: Optional[Union[str, List[str]]] = None
|
|
bad_token_ids: Optional[List[int]] = None
|
|
_bad_word_ids: Optional[List[List[int]]] = field(default=None,
|
|
init=False,
|
|
repr=False)
|
|
stop: Optional[Union[str, List[str]]] = None
|
|
stop_token_ids: Optional[List[int]] = None
|
|
include_stop_str_in_output: bool = False
|
|
_stop_word_ids: Optional[List[List[int]]] = field(default=None,
|
|
init=False,
|
|
repr=False)
|
|
|
|
embedding_bias: Optional[torch.Tensor] = None
|
|
external_draft_tokens_config: Optional[
|
|
tllme.ExternalDraftTokensConfig] = None
|
|
logits_post_processor_name: Optional[str] = None
|
|
|
|
n: int = 1
|
|
best_of: Optional[int] = None
|
|
use_beam_search: bool = False
|
|
|
|
# Keep the below fields in sync with tllme.SamplingConfig or maintin the mapping table.
|
|
beam_width: int = 1
|
|
num_return_sequences: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
top_p_min: Optional[float] = None
|
|
top_p_reset_ids: Optional[int] = None
|
|
top_p_decay: Optional[float] = None
|
|
seed: Optional[int] = None
|
|
random_seed: Optional[int] = None
|
|
temperature: Optional[float] = None
|
|
min_tokens: Optional[int] = None
|
|
min_length: Optional[int] = None
|
|
beam_search_diversity_rate: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
presence_penalty: Optional[float] = None
|
|
frequency_penalty: Optional[float] = None
|
|
length_penalty: Optional[float] = None
|
|
early_stopping: Optional[int] = None
|
|
no_repeat_ngram_size: Optional[int] = None
|
|
|
|
# Keep the below fields in sync with tllme.OutputConfig
|
|
return_log_probs: bool = False
|
|
return_context_logits: bool = False
|
|
return_generation_logits: bool = False
|
|
exclude_input_from_output: bool = True
|
|
return_encoder_output: bool = False
|
|
|
|
# Tokenizer-related configs
|
|
ignore_eos: bool = False
|
|
detokenize: bool = True
|
|
add_special_tokens: bool = True
|
|
truncate_prompt_tokens: Optional[int] = None
|
|
skip_special_tokens: bool = True
|
|
spaces_between_special_tokens: bool = True
|
|
|
|
def __post_init__(self):
|
|
if self.pad_id is None:
|
|
self.pad_id = self.end_id
|
|
|
|
# Handle the compatibility between OpenAI and HF style-parameters.
|
|
hf_style = self.beam_width > 1 or self.num_return_sequences
|
|
openai_style = self.n > 1 or self.best_of or self.use_beam_search
|
|
|
|
if hf_style and openai_style:
|
|
ambiguous_params = {
|
|
'beam_width': self.beam_width,
|
|
'num_return_sequences': self.num_return_sequences,
|
|
'n': self.n,
|
|
'best_of': self.best_of,
|
|
'use_beam_search': self.use_beam_search,
|
|
}
|
|
raise ValueError(
|
|
'Got ambiguous parameters. Please specify either Hugging Face '
|
|
'style parameters (beam_width or num_return_sequences) or '
|
|
'OpenAI style parameters (n, best_of, or use_beam_search), '
|
|
f'but not both: {ambiguous_params}. It is recommended to use '
|
|
'OpenAI style parameters (n, best_of, use_beam_search).')
|
|
|
|
if hf_style:
|
|
logger.warning(
|
|
"Please use 'n' and 'best_of' for the LLM API. The use of "
|
|
"'beam_width' and 'num_return_sequences' will be deprecated "
|
|
"in a future release.")
|
|
self.n = self.beam_width
|
|
self.best_of = self.num_return_sequences
|
|
self.use_beam_search = self.beam_width > 1
|
|
|
|
self.best_of = self.best_of or self.n
|
|
|
|
if (not self.use_beam_search and self.n < self.best_of
|
|
and not self.return_log_probs):
|
|
logger.info(
|
|
f"Enable 'return_log_probs' to trim the {self.n}-best among "
|
|
f"{self.best_of} outputs under sampling decoding.")
|
|
self.return_log_probs = True
|
|
|
|
self._validate()
|
|
|
|
def _validate(self):
|
|
''' Verify the sampling parameters.
|
|
|
|
This function verifies the sampling parameters in the LLM API, which
|
|
may have stricter requirements than the Executor class of C++ runtime.
|
|
For instance, while the greedy decoding with n > 1 is capable in the
|
|
Executor class of C++ runtime, the LLM API disallows such combination.
|
|
'''
|
|
if self.best_of is not None:
|
|
if self.best_of > 1 and self.best_of < self.n:
|
|
raise ValueError(
|
|
f'In beam search, beam_width ({self.beam_width}) must be '
|
|
f'greater than or equal to num_return_sequences '
|
|
f'({self.num_return_sequences}).')
|
|
|
|
if (self.best_of > 1 and self.greedy_decoding and
|
|
not os.environ.get('TLLM_ALLOW_N_GREEDY_DECODING', None)):
|
|
raise ValueError(
|
|
f'Greedy decoding in the LLM API does not allow multiple '
|
|
f'returns. Please set to best_of=1, got best_of={self.best_of}. '
|
|
f'Please set to best_of=1 or set an environment variable '
|
|
f'TLLM_ALLOW_N_GREEDY_DECODING=1 to allow best_of > 1 '
|
|
f'under the greedy decoding.')
|
|
|
|
if self.truncate_prompt_tokens is not None and self.truncate_prompt_tokens < 1:
|
|
raise ValueError(
|
|
f"truncate_prompt_tokens must be >= 1, got {self.truncate_prompt_tokens}"
|
|
)
|
|
|
|
@property
|
|
def greedy_decoding(self) -> bool:
|
|
return (not self.use_beam_search
|
|
and (self.top_k is None or self.top_k == 1)
|
|
and (self.top_p is None or self.top_p == 0.0))
|
|
|
|
def setup(self,
|
|
tokenizer,
|
|
add_special_tokens: bool = False) -> 'SamplingParams':
|
|
if self.end_id is None:
|
|
self.end_id = tokenizer.eos_token_id
|
|
self.pad_id = tokenizer.pad_token_id
|
|
if self.pad_id is None:
|
|
self.pad_id = self.end_id
|
|
|
|
if self.bad is not None:
|
|
strs = [self.bad] if isinstance(self.bad, str) else self.bad
|
|
self._bad_word_ids = [
|
|
tokenizer.encode(s, add_special_tokens=add_special_tokens)
|
|
for s in strs
|
|
]
|
|
|
|
if self.stop is not None:
|
|
strs = [self.stop] if isinstance(self.stop, str) else self.stop
|
|
self._stop_word_ids = [
|
|
tokenizer.encode(s, add_special_tokens=add_special_tokens)
|
|
for s in strs
|
|
]
|
|
|
|
return self
|
|
|
|
def _get_bad_words(self) -> List[List[int]]:
|
|
words = []
|
|
if self.bad_token_ids is not None:
|
|
words = [[i] for i in self.bad_token_ids]
|
|
|
|
if self.bad is None:
|
|
return words
|
|
else:
|
|
if self._bad_word_ids is None:
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__}.bad ({self.bad}) is not processed by tokenizer, "
|
|
"please call the setup method.")
|
|
return words + self._bad_word_ids
|
|
|
|
def _get_stop_words(self) -> List[List[int]]:
|
|
words = []
|
|
if self.stop_token_ids is not None:
|
|
words = [[i] for i in self.stop_token_ids]
|
|
|
|
if self.stop is None:
|
|
return words
|
|
else:
|
|
if self._stop_word_ids is None:
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__}.stop ({self.stop}) is not processed by tokenizer, "
|
|
"please call the setup method.")
|
|
return words + self._stop_word_ids
|
|
|
|
def _get_stop_reasons_and_words(
|
|
self) -> List[Tuple[Union[str, int], List[int]]]:
|
|
stop_reasons = []
|
|
if self.stop_token_ids is not None:
|
|
stop_reasons.extend(self.stop_token_ids)
|
|
if self.stop is not None:
|
|
if isinstance(self.stop, str):
|
|
stop_reasons.append(self.stop)
|
|
else:
|
|
stop_reasons.extend(self.stop)
|
|
stop_words = self._get_stop_words()
|
|
if len(stop_reasons) != len(stop_words):
|
|
raise RuntimeError(
|
|
f"The number of {self.__class__.__name__}.stop_token_ids ({self.stop_token_ids}) "
|
|
f"and {self.__class__.__name__}.stop ({self.stop}) are inconsistent with the "
|
|
f"processed stop_words ({stop_words}).")
|
|
return list(zip(stop_reasons, stop_words))
|
|
|
|
def _get_sampling_config(self) -> tllme.SamplingConfig:
|
|
expected_fields = {
|
|
"beam_width", "top_k", "top_p", "top_p_min", "top_p_reset_ids",
|
|
"top_p_decay", "seed", "random_seed", "temperature", "min_tokens",
|
|
"min_length", "beam_search_diversity_rate", "repetition_penalty",
|
|
"presence_penalty", "frequency_penalty", "length_penalty",
|
|
"early_stopping", "no_repeat_ngram_size", "num_return_sequences"
|
|
}
|
|
found_fields = {
|
|
f
|
|
for f in dir(tllme.SamplingConfig) if not f.startswith('__')
|
|
}
|
|
|
|
if found_fields != expected_fields:
|
|
raise RuntimeError(
|
|
"Found fields in `tllme.SamplingConfig` different than expected; "
|
|
f"if `tllme.SamplingConfig` is changed, please update {self.__class__.__name__} accordingly. "
|
|
"See [TO DEVELOPER] comments for detailed instructions.")
|
|
|
|
# A map from the SamplingConfig fields of the LLM API to their
|
|
# corresponding field names of the Executor of TRT-LLM C++ runtime.
|
|
# In sampling, there is no parameter that directly matches 'best_of',
|
|
# so outputs must be trimmed during postprocessing.
|
|
# | LLM API | TRT-LLM Executor |
|
|
# --------------|-----------------|------------------------|
|
|
# | Beam search | use_beam_search | beam_width > 1 |
|
|
# | Beam search | n | num_return_sequences |
|
|
# | Beam search | best_of | beam_width |
|
|
# |-------------|-----------------|------------------------|
|
|
# | Sampling | use_beam_search | beam_width == 1 |
|
|
# | Sampling | n | num_return_sequences |
|
|
# | Sampling | best_of | no corresponding param |
|
|
unmatched_params = [
|
|
'num_return_sequences', 'beam_width', 'n', 'best_of',
|
|
'use_beam_search'
|
|
]
|
|
llmapi_to_rt_param_map = {
|
|
f: getattr(self, f)
|
|
for f in expected_fields if f not in unmatched_params
|
|
}
|
|
if self.use_beam_search:
|
|
llmapi_to_rt_param_map['num_return_sequences'] = self.n
|
|
llmapi_to_rt_param_map['beam_width'] = self.best_of
|
|
else:
|
|
llmapi_to_rt_param_map['num_return_sequences'] = self.best_of
|
|
llmapi_to_rt_param_map['beam_width'] = 1
|
|
|
|
return tllme.SamplingConfig(**llmapi_to_rt_param_map)
|
|
|
|
def _get_output_config(self) -> tllme.OutputConfig:
|
|
expected_fields = [
|
|
"return_log_probs", "return_context_logits",
|
|
"return_generation_logits", "exclude_input_from_output",
|
|
"return_encoder_output"
|
|
]
|
|
found_fields = [
|
|
f for f in dir(tllme.OutputConfig) if not f.startswith('__')
|
|
]
|
|
if set(found_fields) != set(expected_fields):
|
|
raise RuntimeError(
|
|
"Found fields in `tllme.OutputConfig` different than expected; "
|
|
f"if `tllme.OutputConfig` is changed, please update {self.__class__.__name__} accordingly. "
|
|
"See [TO DEVELOPER] comments for detailed instructions.")
|
|
return tllme.OutputConfig(
|
|
**{f: getattr(self, f)
|
|
for f in expected_fields})
|
|
|
|
|
|
def print_colored(message,
|
|
color: Optional[str] = None,
|
|
writer: io.TextIOWrapper = sys.stderr):
|
|
colors = dict(
|
|
grey="\x1b[38;20m",
|
|
yellow="\x1b[33;20m",
|
|
red="\x1b[31;20m",
|
|
bold_red="\x1b[31;1m",
|
|
bold_green="\033[1;32m",
|
|
green="\033[0;32m",
|
|
)
|
|
reset = "\x1b[0m"
|
|
|
|
if color:
|
|
writer.write(colors[color] + message + reset)
|
|
else:
|
|
writer.write(message)
|
|
|
|
|
|
def file_with_glob_exists(directory, glob) -> bool:
|
|
path = Path(directory)
|
|
for file_path in path.glob(glob):
|
|
if file_path.is_file():
|
|
return True
|
|
return False
|
|
|
|
|
|
def file_with_suffix_exists(directory, suffix) -> bool:
|
|
return file_with_glob_exists(directory, f'*{suffix}')
|
|
|
|
|
|
def get_device_count() -> int:
|
|
return torch.cuda.device_count() if torch.cuda.is_available() else 0
|
|
|
|
|
|
def get_total_gpu_memory(device: int) -> float:
|
|
return torch.cuda.get_device_properties(device).total_memory
|
|
|
|
|
|
class GpuArch:
|
|
|
|
@staticmethod
|
|
def get_arch() -> int:
|
|
return get_gpu_arch()
|
|
|
|
@staticmethod
|
|
def is_post_hopper() -> bool:
|
|
return get_gpu_arch() >= 9
|
|
|
|
@staticmethod
|
|
def is_post_ampere() -> bool:
|
|
return get_gpu_arch() >= 8
|
|
|
|
@staticmethod
|
|
def is_post_volta() -> bool:
|
|
return get_gpu_arch() >= 7
|
|
|
|
|
|
def get_gpu_arch(device: int = 0) -> int:
|
|
return torch.cuda.get_device_properties(device).major
|
|
|
|
|
|
class ContextManager:
|
|
''' A helper to create a context manager for a resource. '''
|
|
|
|
def __init__(self, resource):
|
|
self.resource = resource
|
|
|
|
def __enter__(self):
|
|
return self.resource.__enter__()
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
return self.resource.__exit__(exc_type, exc_value, traceback)
|
|
|
|
|
|
def is_directory_empty(directory: Path) -> bool:
|
|
return not any(directory.iterdir())
|
|
|
|
|
|
class ExceptionHandler(metaclass=Singleton):
|
|
|
|
def __init__(self):
|
|
self._sys_excepthook: Callable = sys.excepthook
|
|
self._obj_refs_and_callbacks: List[Tuple[weakref.ReferenceType,
|
|
str]] = []
|
|
|
|
def __call__(self, exc_type, exc_value, traceback):
|
|
self._sys_excepthook(exc_type, exc_value, traceback)
|
|
|
|
for obj_ref, callback_name in self._obj_refs_and_callbacks:
|
|
if (obj := obj_ref()) is not None:
|
|
callback = getattr(obj, callback_name)
|
|
callback()
|
|
|
|
def register(self, obj: Any, callback_name: str):
|
|
assert callable(getattr(obj, callback_name, None))
|
|
self._obj_refs_and_callbacks.append((weakref.ref(obj), callback_name))
|
|
|
|
|
|
exception_handler = ExceptionHandler()
|
|
sys.excepthook = exception_handler
|
|
|
|
# Use the system temporary directory to share the cache
|
|
temp_dir = tempfile.gettempdir()
|
|
|
|
|
|
def get_file_lock(model_name: str,
|
|
cache_dir: Optional[str] = None) -> filelock.FileLock:
|
|
# Hash the model name to avoid invalid characters in the lock file path
|
|
hashed_model_name = hashlib.sha256(model_name.encode()).hexdigest()
|
|
|
|
cache_dir = cache_dir or temp_dir
|
|
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
lock_file_path = os.path.join(cache_dir, f"{hashed_model_name}.lock")
|
|
|
|
return filelock.FileLock(lock_file_path)
|
|
|
|
|
|
class DisabledTqdm(tqdm):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs, disable=True)
|
|
|
|
|
|
def download_hf_model(model: str, revision: Optional[str] = None) -> Path:
|
|
with get_file_lock(model):
|
|
hf_folder = snapshot_download(
|
|
model,
|
|
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
|
revision=revision,
|
|
tqdm_class=DisabledTqdm)
|
|
return Path(hf_folder)
|
|
|
|
|
|
def download_hf_pretrained_config(model: str,
|
|
revision: Optional[str] = None) -> Path:
|
|
with get_file_lock(model):
|
|
hf_folder = snapshot_download(
|
|
model,
|
|
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
|
revision=revision,
|
|
allow_patterns=["config.json"],
|
|
tqdm_class=DisabledTqdm)
|
|
return Path(hf_folder)
|
|
|
|
|
|
def append_docstring(docstring: str):
|
|
''' A decorator to append a docstring to a function. '''
|
|
|
|
def decorator(fn):
|
|
fn.__doc__ = (fn.__doc__ or '') + docstring
|
|
return fn
|
|
|
|
return decorator
|
|
|
|
|
|
def set_docstring(docstring: str):
|
|
''' A decorator to set a docstring to a function. '''
|
|
|
|
def decorator(fn):
|
|
fn.__doc__ = docstring
|
|
return fn
|
|
|
|
return decorator
|
|
|
|
|
|
def get_directory_size_in_gb(directory: Path) -> float:
|
|
""" Get the size of the directory. """
|
|
if not (directory.is_dir() and directory.exists()):
|
|
raise ValueError(f"{directory} is not a directory.")
|
|
total_size = 0
|
|
for dirpath, dirnames, filenames in os.walk(directory):
|
|
for f in filenames:
|
|
fp = os.path.join(dirpath, f)
|
|
total_size += os.path.getsize(fp)
|
|
return total_size / 1024**3 # GB
|
|
|
|
|
|
class ManagedThread(threading.Thread):
|
|
""" A thread that will put exceptions into an external queue if the task fails.
|
|
|
|
There are two approaches to stop the thread:
|
|
1. Set stop_event to stop the loop
|
|
2. Let `task` return False
|
|
|
|
Args:
|
|
task (Callable[..., bool]): The task to run repeatedly in the thread, should return False if break the loop.
|
|
error_queue (Queue): The queue to put exceptions into if the task fails.
|
|
name (str): The name of the thread.
|
|
**kwargs: The arguments to pass to the task
|
|
"""
|
|
|
|
def __init__(self,
|
|
task: Callable[..., bool],
|
|
error_queue: Queue,
|
|
name: Optional[str] = None,
|
|
**kwargs):
|
|
super().__init__(name=name)
|
|
self.task = task
|
|
self.error_queue = error_queue
|
|
self.kwargs = kwargs
|
|
self.daemon = True
|
|
|
|
self.stop_event = threading.Event()
|
|
|
|
def run(self):
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
if not self.task(**self.kwargs):
|
|
break
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error in thread {self.name}: {e}\n{traceback.format_exc()}"
|
|
)
|
|
self.error_queue.put(e)
|
|
|
|
logger.info(f"Thread {self.name} stopped.")
|
|
|
|
def stop(self):
|
|
self.stop_event.set()
|
|
|
|
|
|
@cache
|
|
def enable_llm_debug() -> bool:
|
|
''' Tell whether to enable the debug mode for LLM class. '''
|
|
return os.environ.get("TLLM_LLM_ENABLE_DEBUG", "0") == "1"
|
|
|
|
|
|
class AsyncQueue:
|
|
'''
|
|
AsyncQueue is container containing `async_q` for `async get` and `sync_q` for sync `get`.
|
|
This is used to provide a compatible interface for janus.Queue.
|
|
'''
|
|
|
|
class EventLoopShutdownError(Exception):
|
|
pass
|
|
|
|
def __init__(self):
|
|
self._q = Queue()
|
|
self.async_q = _AsyncQueue(self._q)
|
|
self.sync_q = _SyncQueue(self._q, self.async_q._event)
|
|
|
|
|
|
class _SyncQueue:
|
|
'''
|
|
A simplified Queue that provides a `get` method that is compatible with the asyncio event loop.
|
|
'''
|
|
|
|
def __init__(self,
|
|
queue: Queue,
|
|
event: asyncio.Event,
|
|
loop: Optional[asyncio.AbstractEventLoop] = None):
|
|
self._q = queue
|
|
self._event = event
|
|
self._loop = loop or asyncio.get_event_loop()
|
|
|
|
def put(self, item) -> None:
|
|
|
|
async def _set_event(event):
|
|
event.set()
|
|
|
|
self._q.put_nowait(item)
|
|
|
|
if self._loop.is_running():
|
|
asyncio.run_coroutine_threadsafe(_set_event(self._event),
|
|
self._loop)
|
|
else:
|
|
raise AsyncQueue.EventLoopShutdownError
|
|
|
|
def put_nowait(self, item) -> None:
|
|
''' Put item without notify the event. '''
|
|
self._q.put_nowait(item)
|
|
|
|
@staticmethod
|
|
def notify_events(loop: asyncio.AbstractEventLoop,
|
|
events: List[asyncio.Event]) -> None:
|
|
''' Notify the events in the loop. '''
|
|
|
|
async def _set_events(events):
|
|
for event in events:
|
|
event.set()
|
|
|
|
if loop.is_running():
|
|
asyncio.run_coroutine_threadsafe(_set_events(events), loop)
|
|
else:
|
|
raise AsyncQueue.EventLoopShutdownError
|
|
|
|
@property
|
|
def loop(self) -> asyncio.AbstractEventLoop:
|
|
return self._loop
|
|
|
|
@property
|
|
def event(self) -> asyncio.Event:
|
|
return self._event
|
|
|
|
def full(self) -> bool:
|
|
return self._q.full()
|
|
|
|
|
|
class _AsyncQueue:
|
|
'''
|
|
A simplified asyncio.Queue that provides a `get` method that is compatible with the standard library Queue.
|
|
'''
|
|
|
|
def __init__(self, queue: Queue):
|
|
self._event = asyncio.Event()
|
|
self._q = queue
|
|
|
|
async def get(self, timeout=None):
|
|
# This may raise asyncio.TimeoutError
|
|
await asyncio.wait_for(self._event.wait(), timeout=timeout)
|
|
|
|
res = self._q.get()
|
|
if self._q.empty():
|
|
self._event.clear()
|
|
return res
|